Joint Latent Space Model for Social Networks with Multivariate Attributes.

Selena Wang, Subhadeep Paul, Paul De Boeck
Author Information
  1. Selena Wang: Department of Biostatistics, Yale University, New Haven, USA. selena.wang@yale.edu. ORCID
  2. Subhadeep Paul: Department of Statistics, The Ohio State University, Columbus, USA.
  3. Paul De Boeck: Department of Statistics, The Ohio State University, Columbus, USA.

Abstract

In social, behavioral and economic sciences, researchers are interested in modeling a social network among a group of individuals, along with their attributes. The attributes can be responses to survey questionnaires and are often high dimensional. We propose a joint latent space model (JLSM) that summarizes information from the social network and the multivariate attributes in a person-attribute joint latent space. We develop a variational Bayesian expectation-maximization estimation algorithm to estimate the attribute and person locations in the joint latent space. This methodology allows for effective integration, informative visualization and prediction of social networks and attributes. Using JLSM, we explore the French financial elites based on their social networks and their career, political views and social status. We observe a division in the social circles of the French elites in accordance with the differences in their attributes. We analyze user networks and behaviors in multimodal social media systems like YouTube. A R package "jlsm" is developed to fit the models proposed in this paper and is publicly available from the CRAN repository https://cran.r-project.org/web/packages/jlsm/jlsm.pdf .

Keywords

References

  1. Agarwal, A., & Xue, L. (2020). Model-based clustering of nonparametric weighted networks with application to water pollution analysis. Technometrics, 62, 161–172. [PMID: 33716325]
  2. Airoldi, E. M., Blei, D. M., Fienberg, S. E., & Xing, E. P. (2008). Mixed membership stochastic blockmodels. Journal of Machine Learning Research, 9, 1981–2014. [PMID: 21701698]
  3. Arroyo, J., Athreya, A., Cape, J., Chen, G., Priebe, C. E., & Vogelstein, J. T. (2019). Inference for multiple heterogeneous networks with a common invariant subspace. arXiv preprint arXiv:1906.10026
  4. Attias, H. (1999). Inferring parameters and structure of latent variable models by variational Bayes. In Proceedings of the fifteenth conference on uncertainty in artificial intelligence (pp. 21–30). Morgan Kaufmann Publishers Inc.
  5. Austin, A., Linkletter, C., & Wu, Z. (2013). Covariate-defined latent space random effects model. Social Networks, 35, 338–346.
  6. Barbillon, P., Donnet, S., Lazega, E., & Bar-Hen, A. (2015). Stochastic block models for multiplex networks: An application to networks of researchers. arXiv preprint arXiv:1501.06444
  7. Beal, M. J., et al. (2003). Variational algorithms for approximate Bayesian inference. University of London.
  8. Beal, M. J., Ghahramani, Z., et al. (2006). Variational Bayesian learning of directed graphical models with hidden variables. Bayesian Analysis, 1, 793–831.
  9. Blei, D. M., Kucukelbir, A., & McAuliffe, J. D. (2017). Variational inference: A review for statisticians. Journal of the American Statistical Association, 112, 859–877.
  10. Bollen, K. A. (2002). Latent variables in psychology and the social sciences. Annual Review of Psychology, 53, 605–634. [PMID: 11752498]
  11. Borsboom, D., & Cramer, A. O. (2013). Network analysis: An integrative approach to the structure of psychopathology. Annual Review of Clinical Psychology, 9, 91–121. [PMID: 23537483]
  12. Bramoullé, Y., Djebbari, H., & Fortin, B. (2009). Identification of peer effects through social networks. Journal of Econometrics, 150, 41–55.
  13. Celisse, A., Daudin, J. J., & Pierre, L. (2012). Consistency of maximum-likelihood and variational estimators in the stochastic block model. Electronic Journal of Statistics, 6, 1847–1899.
  14. Che, C., Jin, I. H., & Zhang, Z. (2021). Network mediation analysis using model-based eigenvalue decomposition. Structural Equation Modeling: A Multidisciplinary Journal, 28, 148–161.
  15. Cho, Y.-S., Ver Steeg, G., Ferrara, E., & Galstyan, A. (2016). Latent space model for multi-modal social data. In Proceedings of the 25th international conference on world wide web (pp. 447–458).
  16. D’Angelo, S., Alfò, M., & Murphy, T. B. (2018). Node-specific effects in latent space modelling of multidimensional networks. In 49th scientific meeting of the Italian Statistical Society.
  17. D’Angelo, S., Alfò, M., & Brendan Murphy, T. (2020). Modeling node heterogeneity in latent space models for multidimensional networks. Statistica Neerlandica, 74, 324–341.
  18. D’Angelo, S., Alfò, M., & Fop, M. (2020). Model-based clustering for multivariate networks. arXiv preprint arXiv:2001.05260
  19. Daudin, J. J., Picard, F., & Robin, S. (2008). A mixture model for random graphs. Statistics and Computing, 18, 173–183.
  20. Dean, D. O., Bauer, D. J., & Prinstein, M. J. (2017). Friendship dissolution within social networks modeled through multilevel event history analysis. Multivariate Behavioral Research, 52, 271–289. [PMID: 28463022]
  21. Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society. Series B (Methodological) 1–38.
  22. Dorans, N., & Drasgow, F. (1978). Alternative weighting schemes for linear prediction. Organizational Behavior and Human Performance, 21, 316–345.
  23. Epskamp, S., Rhemtulla, M., & Borsboom, D. (2017). Generalized network pschometrics: Combining network and latent variable models. Psychometrika, 82, 904–927. [PMID: 28290111]
  24. Fosdick, B. K. (2013). Modeling Heterogeneity within and between Matrices and Arrays, Ph.D. thesis.
  25. Fosdick, B. K., & Hoff, P. D. (2015). Testing and modeling dependencies between a network and nodal attributes. Journal of the American Statistical Association, 110, 1047–1056. [PMID: 26848204]
  26. Frank, K. A., Zhao, Y., & Borman, K. (2004). Social capital and the diffusion of innovations within organizations: The case of computer technology in schools. Sociology of Education, 77, 148–171.
  27. Fratiglioni, L., Wang, H.-X., Ericsson, K., Maytan, M., & Winblad, B. (2000). Influence of social network on occurrence of dementia: A community-based longitudinal study. The Lancet, 355, 1315–1319.
  28. Frey, M. C., & Detterman, D. K. (2004). Scholastic assessment or g? The relationship between the scholastic assessment test and general cognitive ability. Psychological Science, 15, 373–378. [PMID: 15147489]
  29. Friel, N., Rastelli, R., Wyse, J., & Raftery, A. E. (2016). Interlocking directorates in Irish companies using a latent space model for bipartite networks. Proceedings of the National Academy of Sciences, 113, 6629–6634.
  30. Fujimoto, K., Wang, P., & Valente, T. W. (2013). The decomposed affiliation exposure model: A network approach to segregating peer influences from crowds and organized sports. Network Science, 1, 154–169. [PMID: 24349718]
  31. Goldsmith-Pinkham, P., & Imbens, G. W. (2013). Social networks and the identification of peer effects. Journal of Business and Economic Statistics, 31, 253–264.
  32. Gollini, I. (2015). lvm4net: Latent variable models for networks. Latent variable models for network data using fast inferential procedures.
  33. Gollini, I., & Murphy, T. B. (2016). Joint modeling of multiple network views. Journal of Computational and Graphical Statistics, 25, 246–265.
  34. Gormley, I. C., & Murphy, T. B. (2010). A mixture of experts latent position cluster model for social network data. Statistical Methodology, 7, 385–405.
  35. Guhaniyogi, R., Rodriguez, A., et al. (2020). Joint modeling of longitudinal relational data and exogenous variables. Bayesian Analysis, 15, 477–503.
  36. Guy, I., Zwerdling, N., Carmel, D., Ronen, I., Uziel, E., Yogev, S., & Ofek-Koifman, S. (2009). Personalized recommendation of social software items based on social relations. In Proceedings of the third ACM conference on Recommender systems (pp. 53–60).
  37. Handcock, M. S., Raftery, A. E., & Tantrum, J. M. (2007). Model-based clustering for social networks. Journal of the Royal Statistical Society Series A, 170, 301–354.
  38. Handcock, M. S., Raftery, A. E., & Tantrum, J. M. (2007). Model-based clustering for social networks. Journal of the Royal Statistical Society: Series A (Statistics in Society), 170, 301–354.
  39. Hoff, P. D. (2005). Bilinear mixed-effects models for dyadic data. Journal of the American Statistical Association, 100, 286–295.
  40. Hoff, P. (2008). Modeling homophily and stochastic equivalence in symmetric relational data. In Advances in neural information processing systems (pp. 657–664).
  41. Hoff, P. D. (2009). Multiplicative latent factor models for description and prediction of social networks. Computational and Mathematical Organization Theory, 15, 261.
  42. Hoff, P. D. (2018). Additive and multiplicative effects network models. arXiv preprint arXiv:1807.08038
  43. Hoff, P. D., Raftery, A. E., & Handcock, M. S. (2002). Latent space approaches to social network analysis. Journal of the American Statistical Association, 97, 1090–1098.
  44. Huang, S., & Feng, Y. (2018). Pairwise covariates-adjusted block model for community detection. arXiv preprint arXiv:1807.03469
  45. Jensen, J. L. W. V. (1906). Sur les fonctions convexes et les inégalités entre les valeurs moyennes. Acta Mathematica, 30, 175–193.
  46. Jeon, M., Jin, I. H., Schweinberger, M. and Baugh, S. (2021). Mapping unobserved item–respondent interactions: a latent space item response model with interaction map. psychometrika 86 378–403.
  47. Jin, I. H., & Jeon, M. (2018). A doubly latent space joint model for local item and person dependence in the analysis of item response data. Psychometrika 1–25.
  48. Jin, I. H., & Jeon, M. (2019). A doubly latent space joint model for local item and person dependence in the analysis of item response data. Psychometrika, 84, 236–260. [PMID: 29987708]
  49. Kadushin, C. (1995). Friendship among the French financial elite. American Sociological Review 202–221.
  50. Kéfi, S., Miele, V., Wieters, E. A., Navarrete, S. A., & Berlow, E. L. (2016). How structured is the entangled bank? The surprisingly simple organization of multiplex ecological networks leads to increased persistence and resilience. PLoS Biology, 14, e1002527. [PMID: 27487303]
  51. Kim, Y., & Srivastava, J. (2007). Impact of social influence in e-commerce decision making. In Proceedings of the ninth international conference on electronic commerce (pp. 293–302). ACM.
  52. Kim, H.-N., Alkhaldi, A., El Saddik, A., & Jo, G.-S. (2011). Collaborative user modeling with usergenerated tags for social recommender systems. Expert Systems with Applications, 38, 8488–8496.
  53. Kim, B., Lee, K. H., Xue, L., & Niu, X. (2018). A review of dynamic network models with latent variables. Statistics Surveys, 12, 105. [PMID: 31428219]
  54. Koenig, K. A., Frey, M. C., & Detterman, D. K. (2008). ACT and general cognitive ability. Intelligence, 36, 153–160.
  55. Krivitsky, P. N., Handcock, M. S. (2008). Fitting position latent cluster models for social networks with latentnet. Journal of Statistical Software 24.
  56. Krivitsky, P. N., Handcock, M. S., Raftery, A. E., & Hoff, P. D. (2009). Representing degree distributions, clustering, and homophily in social networks with latent cluster random effects models. Social Networks, 31, 204–213. [PMID: 20191087]
  57. Kwon, K. H., Stefanone, M. A., & Barnett, G. A. (2014). Social network influence on online behavioral choices: exploring group formation on social network sites. American Behavioral Scientist, 58, 1345–1360.
  58. Leenders, R. T. A. (2002). Modeling social influence through network autocorrelation: Constructing the weight matrix. Social Networks, 24, 21–47.
  59. Liu, H., Jin, I. H., & Zhang, Z. (2018). Structural equation modeling of social networks: Specification, estimation, and application. Multivariate Behavioral Research 1–17.
  60. Liu, F., & Lee, H. J. (2010). Use of social network information to enhance collaborative filtering performance. Expert Systems with Applications, 37, 4772–4778.
  61. Liu, H., Jin, I. H., Zhang, Z., & Yuan, Y. (2021). Social network mediation analysis: A latent space approach. Psychometrika, 86, 272–298. [PMID: 33346886]
  62. Lu, Y., Tsaparas, P., Ntoulas, A., & Polanyi, L. (2010). Exploiting social context for review quality prediction. In Proceedings of the 19th international conference on world wide web (pp. 691–700).
  63. Lusher, D., Koskinen, J., & Robins, G. (2013). Exponential random graph models for social networks: Theory, methods, and applications. Cambridge University Press.
  64. Ma, Z., Ma, Z., & Yuan, H. (2020). Universal latent space model fitting for large networks with edge covariates. Journal of Machine Learning Research, 21, 1–67.
  65. Ma, H., Zhou, D., Liu, C., Lyu, M. R., & King, I. (2011). Recommender systems with social regularization. In Proceedings of the fourth ACM international conference on Web search and data mining (pp. 287–296).
  66. Marsman, M., Borsboom, D., Kruis, J., Epskamp, S., van Bork, R., Waldorp, L., Maas, H. V. D., & Maris, G. (2018). An introduction to network psychometrics: Relating Ising network models to item response theory models. Multivariate Behavioral Research, 53, 15–35. [PMID: 29111774]
  67. Matias, C., & Miele, V. (2016). Statistical clustering of temporal networks through a dynamic stochastic block model. Journal of the Royal Statistical Society: Series B (Statistical Methodology).
  68. McPherson, M., Smith-Lovin, L., & Cook, J. M. (2001). Birds of a feather: Homophily in social networks. Annual Review of Sociology, 27, 415–444.
  69. Mele, A., Hao, L., Cape, J., & Priebe, C. E. (2019). Spectral inference for large Stochastic Blockmodels with nodal covariates. arXiv preprint arXiv:1908.06438
  70. Mercken, L., Snijders, T. A., Steglich, C., Vartiainen, E., & De Vries, H. (2010). Dynamics of adolescent friendship networks and smoking behavior. Social Networks, 32, 72–81.
  71. Mislove, A., Marcon, M., Gummadi, K. P., Druschel, P., & Bhattacharjee, B. (2007). Measurement and analysis of online social networks. In Proceedings of the 7th ACM SIGCOMM conference on Internet measurement (pp. 29–42).
  72. Murdoch, D., Chow, E., Murdoch, M. D., & Suggests, M. (2020). Package ‘ellipse’. American Statistician, 50, 178–180.
  73. Palestro, J. J., Bahg, G., Sederberg, P. B., Lu, Z.-L., Steyvers, M., & Turner, B. M. (2018). A tutorial on joint models of neural and behavioral measures of cognition. Journal of Mathematical Psychology, 84, 20–48.
  74. Paul, S., & Chen, Y. (2016). Consistent community detection in multi-relational data through restricted multi-layer stochastic blockmodel. Electronic Journal of Statistics, 10, 3807–3870.
  75. Paul, S., & Chen, Y. (2020). Spectral and matrix factorization methods for consistent community detection in multi-layer networks. The Annals of Statistics, 48, 230–250.
  76. Robins, G., Pattison, P., & Elliott, P. (2001). Network models for social influence processes. Psychometrika, 66, 161–189.
  77. Roy, S., Atchadé, Y., & Michailidis, G. (2019). Likelihood inference for large scale stochastic blockmodels with covariates based on a divide-and-conquer parallelizable algorithm with communication. Journal of Computational and Graphical Statistics, 28, 609–619. [PMID: 31595140]
  78. Salter-Townshend, M., & McCormick, T. H. (2017). Latent space models for multiview network data. The Annals of Applied Statistics, 11, 1217. [PMID: 29721127]
  79. Salter-Townshend, M., & Murphy, T. B. (2013). Variational Bayesian inference for the latent position cluster model for network data. Computational Statistics and Data Analysis, 57, 661–671.
  80. Sarkar, P., & Moore, A. W. (2006). Dynamic social network analysis using latent space models. In Advances in neural information processing systems (pp. 1145–1152).
  81. Schmittmann, V. D., Cramer, A. O., Waldorp, L. J., Epskamp, S., Kievit, R. A., & Borsboom, D. (2013). Deconstructing the construct: A network perspective on psychological phenomena. New Ideas in Psychology, 31, 43–53.
  82. Sewell, D. K., & Chen, Y. (2015). Latent space models for dynamic networks. Journal of the American Statistical Association, 110, 1646–1657.
  83. Sewell, D. K., & Chen, Y. (2016). Latent space models for dynamic networks with weighted edges. Social Networks, 44, 105–116.
  84. Shalizi, C. R., & Thomas, A. C. (2011). Homophily and contagion are generically confounded in observational social network studies. Sociological Methods and Research, 40, 211–239. [PMID: 22523436]
  85. Smith, A. L., Asta, D. M., & Calder, C. A. (2019). The geometry of continuous latent space models for network data. Statistical Science: A Review Journal of the Institute of Mathematical Statistics, 34, 428. [PMID: 33235407]
  86. Spearman, C. (1904). “General intelligence” objectively determined and measured. American Journal of Psychology, 5, 201–293.
  87. Sweet, T. M. (2015). Incorporating covariates into stochastic blockmodels. Journal of Educational and Behavioral Statistics, 40, 635–664.
  88. Sweet, T. M. (2016). Social network methods for the educational and psychological sciences. Educational Psychologist, 51, 381–394.
  89. Sweet, T., & Adhikari, S. (2020). A latent space network model for social influence. Psychometrika 1–24.
  90. VanderWeele, T. J. (2011). Sensitivity analysis for contagion effects in social networks. Sociological Methods and Research, 40, 240–255. [PMID: 25580037]
  91. VanderWeele, T. J., & An, W. (2013). Social networks and causal inference. In Handbook of causal analysis for social research (pp. 353–374). Springer.
  92. Wang, S. (2019). Joint analysis of social and item response networks with latent space models, Master thesis, The Ohio State University.
  93. Wang, S. (2021a). Recent integrations of latent variable network modeling with psychometric models. Frontiers in Psychology 12.
  94. Wang, S. (2021b). JLSM: Joint latent space model for social networks and attributes. Joint latent space models for social networks and attributes using a fast inference approach.
  95. Wang, S., & Edgerton, J. (2022). Resilience to stress in bipartite networks: Application to the Islamic State recruitment network. Journal of Complex Networks, 10, cnac017.
  96. Weng, H., & Feng, Y. (2016). Community detection with nodal information. arXiv preprint arXiv:1610.09735 .
  97. Xu, K. S., Kliger, M., & Hero Iii, A. O. (2014). Adaptive evolutionary clustering. Data Mining and Knowledge Discovery, 28, 304–336.
  98. Yan, B., & Sarkar, P. (2020). Covariate regularized community detection in sparse graphs. Journal of the American Statistical Association 1–12.
  99. Yang, X., Guo, Y., Liu, Y., & Steck, H. (2014). A survey of collaborative filtering based social recommender systems. Computer Communications, 41, 1–10.
  100. Zhang, Y., Levina, E., & Zhu, J. (2016). Community detection in networks with node features. Electronic Journal of Statistics, 10, 3153–3178.
  101. Zhang, X., Xue, S., & Zhu, J. (2020). A flexible latent space model for multilayer networks. In International conference on machine learning (pp. 11288–11297). PMLR.

Grants

  1. DMS 1830547/National Science Foundation

MeSH Term

Humans
Bayes Theorem
Psychometrics
Algorithms
Social Networking

Word Cloud

Created with Highcharts 10.0.0socialattributesnetworkslatentspacejointnetworkJLSMFrenchelitesmultimodalmodelsbehavioraleconomicsciencesresearchersinterestedmodelingamonggroupindividualsalongcanresponsessurveyquestionnairesoftenhighdimensionalproposemodelsummarizesinformationmultivariateperson-attributedevelopvariationalBayesianexpectation-maximizationestimationalgorithmestimateattributepersonlocationsmethodologyallowseffectiveintegrationinformativevisualizationpredictionUsingexplorefinancialbasedcareerpoliticalviewsstatusobservedivisioncirclesaccordancedifferencesanalyzeuserbehaviorsmediasystemslikeYouTubeRpackage"jlsm"developedfitproposedpaperpubliclyavailableCRANrepositoryhttps://cranr-projectorg/web/packages/jlsm/jlsmpdfJointLatentSpaceModelSocialNetworksMultivariateAttributeshigh-dimensionalcovariates

Similar Articles

Cited By