Facial amphiphilic naphthoic acid-derived antimicrobial polymers against multi-drug resistant gram-negative bacteria and biofilms.

Leman Buzoglu Kurnaz, Swagatam Barman, Xiaoming Yang, Claire Fisher, F Wayne Outten, Prakash Nagarkatti, Mitzi Nagarkatti, Chuanbing Tang
Author Information
  1. Leman Buzoglu Kurnaz: Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, United States.
  2. Swagatam Barman: Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, United States.
  3. Xiaoming Yang: Department of Pathology, Microbiology and Immunology, University of South Carolina, School of Medicine, Columbia, SC, 29209, United States.
  4. Claire Fisher: Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, United States.
  5. F Wayne Outten: Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, United States.
  6. Prakash Nagarkatti: Department of Pathology, Microbiology and Immunology, University of South Carolina, School of Medicine, Columbia, SC, 29209, United States.
  7. Mitzi Nagarkatti: Department of Pathology, Microbiology and Immunology, University of South Carolina, School of Medicine, Columbia, SC, 29209, United States.
  8. Chuanbing Tang: Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, United States. Electronic address: tang4@mailbox.sc.edu.

Abstract

Inspired by the facial amphiphilic nature and antimicrobial efficacy of many antimicrobial peptides, this work reported facial amphiphilic bicyclic naphthoic acid derivatives with different ratios of charges to rings that were installed onto side chains of poly(glycidyl methacrylate). Six quaternary ammonium-charged (QAC) polymers were prepared to investigate the structure-activity relationship. These QAC polymers displayed potent antibacterial activity against various multi-drug resistant (MDR) gram-negative pathogens such as Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Acinetobacter baumannii. Polymers demonstrated low hemolysis and high antimicrobial selectivity. Additionally, they were able to eradicate established biofilms and kill metabolically inactive dormant cells. The membrane permeabilization and depolarization results indicated a mechanism of action through membrane disruption. Two lead polymers showed no resistance from MDR-P. aeruginosa and MDR-K. pneumoniae. These facial amphiphiles are potentially a new class of potent antimicrobial agents to tackle the antimicrobial resistance for both planktonic and biofilm-related infections.

Keywords

References

  1. ACS Infect Dis. 2017 Nov 10;3(11):845-853 [PMID: 28976179]
  2. Angew Chem Int Ed Engl. 2020 Apr 16;59(16):6412-6419 [PMID: 32083767]
  3. J Med Chem. 2018 Nov 21;61(22):10265-10275 [PMID: 30388360]
  4. J Biosci. 2021;46: [PMID: 34475315]
  5. Antibiotics (Basel). 2021 May 17;10(5): [PMID: 34067579]
  6. Front Microbiol. 2017 Feb 01;8:123 [PMID: 28203232]
  7. Nat Rev Drug Discov. 2011 Dec 16;11(1):37-51 [PMID: 22173434]
  8. Biomaterials. 2018 Sep;178:363-372 [PMID: 29759729]
  9. GMS Hyg Infect Control. 2017 Apr 10;12:Doc05 [PMID: 28451516]
  10. Nat Protoc. 2008;3(2):163-75 [PMID: 18274517]
  11. Adv Healthc Mater. 2020 Oct;9(19):e2000647 [PMID: 32893500]
  12. J Am Chem Soc. 2014 Apr 2;136(13):4873-6 [PMID: 24628053]
  13. J Pept Sci. 2015 May;21(5):346-55 [PMID: 25522713]
  14. Nat Rev Chem. 2021 Nov;5(11):753-772 [PMID: 36238089]
  15. Int J Mol Sci. 2021 Dec 05;22(23): [PMID: 34884951]
  16. Acta Biomater. 2017 Jul 15;57:103-114 [PMID: 28457962]
  17. Antimicrob Agents Chemother. 2019 Oct 22;63(11): [PMID: 31427303]
  18. Acc Chem Res. 2008 Oct;41(10):1233-40 [PMID: 18616297]
  19. Nat Rev Microbiol. 2007 Jan;5(1):48-56 [PMID: 17143318]
  20. Trends Microbiol. 2019 Apr;27(4):323-338 [PMID: 30683453]
  21. Biomacromolecules. 2012 May 14;13(5):1632-41 [PMID: 22475325]
  22. Bioact Mater. 2022 Jun 27;20:519-527 [PMID: 35846842]
  23. Am J Respir Cell Mol Biol. 2018 Apr;58(4):428-439 [PMID: 29372812]
  24. Front Immunol. 2012 Jul 31;3:221 [PMID: 23060873]
  25. Int J Mol Sci. 2022 Apr 21;23(9): [PMID: 35563014]
  26. Biomacromolecules. 2019 Nov 11;20(11):4096-4106 [PMID: 31573795]
  27. ACS Biomater Sci Eng. 2022 Nov 14;8(11):4996-5007 [PMID: 36288545]
  28. ACS Infect Dis. 2020 May 8;6(5):1228-1237 [PMID: 32138506]
  29. Annu Rev Microbiol. 2010;64:357-72 [PMID: 20528688]
  30. Adv Mater. 2013 Dec 10;25(46):6730-6 [PMID: 24018824]
  31. PLoS One. 2017 Nov 10;12(11):e0187216 [PMID: 29125878]
  32. Trends Chem. 2020 Mar;2(3):227-240 [PMID: 34337370]
  33. Cell Chem Biol. 2020 Dec 17;27(12):1544-1552.e3 [PMID: 32916087]
  34. Nat Rev Microbiol. 2017 Aug;15(8):453-464 [PMID: 28529326]
  35. Biochim Biophys Acta. 2009 Aug;1788(8):1680-6 [PMID: 19010301]
  36. Clin Microbiol Infect. 2012 Mar;18(3):268-81 [PMID: 21793988]
  37. Biomater Sci. 2023 Jan 31;11(3):998-1012 [PMID: 36541679]
  38. Biochim Biophys Acta. 2013 Mar;1828(3):1004-12 [PMID: 23196344]
  39. Biotechnol Adv. 2019 Jan - Feb;37(1):177-192 [PMID: 30500353]
  40. Chem Sci. 2021 Dec 16;13(2):345-364 [PMID: 35126968]
  41. Bioact Mater. 2018 Feb 23;3(2):186-193 [PMID: 29744456]
  42. Front Cell Infect Microbiol. 2021 Sep 01;11:738223 [PMID: 34540722]
  43. Front Microbiol. 2020 Aug 27;11:2057 [PMID: 32973737]
  44. Nat Rev Microbiol. 2023 Feb;21(2):70-86 [PMID: 36127518]
  45. Front Microbiol. 2019 Apr 01;10:539 [PMID: 30988669]
  46. Macromol Rapid Commun. 2013 Jan 11;34(1):74-80 [PMID: 23112127]
  47. Chemistry. 2009;15(5):1123-33 [PMID: 19072946]
  48. ACS Appl Mater Interfaces. 2020 May 13;12(19):21221-21230 [PMID: 31939652]
  49. Nat Rev Microbiol. 2005 Mar;3(3):238-50 [PMID: 15703760]
  50. Small. 2023 Feb;19(6):e2206220 [PMID: 36470671]
  51. Nat Rev Drug Discov. 2020 May;19(5):311-332 [PMID: 32107480]
  52. Lancet Infect Dis. 2018 Mar;18(3):318-327 [PMID: 29276051]
  53. Acc Chem Res. 2010 Jan 19;43(1):30-9 [PMID: 19813703]
  54. J Med Chem. 2016 Jul 14;59(13):5929-69 [PMID: 26804741]
  55. Antimicrob Agents Chemother. 1984 Oct;26(4):546-51 [PMID: 6440475]
  56. ACS Appl Bio Mater. 2019 Dec 16;2(12):5404-5414 [PMID: 35021539]
  57. J Am Chem Soc. 2007 Dec 19;129(50):15474-6 [PMID: 18034491]
  58. Microbiol Mol Biol Rev. 2020 Nov 11;84(4): [PMID: 33177189]
  59. Front Cell Infect Microbiol. 2016 Dec 27;6:194 [PMID: 28083516]
  60. Front Med (Lausanne). 2019 Apr 16;6:74 [PMID: 31041313]
  61. Nat Biotechnol. 2006 Dec;24(12):1551-7 [PMID: 17160061]
  62. Nature. 2002 Jan 24;415(6870):389-95 [PMID: 11807545]
  63. Nat Commun. 2018 Dec 7;9(1):5231 [PMID: 30531920]
  64. Front Public Health. 2019 Jun 11;7:151 [PMID: 31245348]
  65. Biochemistry. 1999 Jun 1;38(22):7235-42 [PMID: 10353835]
  66. Clin Microbiol Rev. 2019 Aug 28;32(4): [PMID: 31462403]
  67. J Phys Chem Lett. 2019 Feb 21;10(4):754-760 [PMID: 30694679]
  68. J Am Chem Soc. 2008 Jul 30;130(30):9836-43 [PMID: 18593128]
  69. J Med Chem. 2019 Feb 28;62(4):1875-1886 [PMID: 30688460]
  70. Biopolymers. 2008;90(3):369-83 [PMID: 18098173]
  71. Front Microbiol. 2020 Oct 16;11:582779 [PMID: 33178164]
  72. Biomacromolecules. 2009 Nov 9;10(11):3098-107 [PMID: 19803480]
  73. Front Microbiol. 2020 Jul 07;11:1565 [PMID: 32733426]

Grants

  1. R01 AI149810/NIAID NIH HHS

MeSH Term

Anti-Infective Agents
Anti-Bacterial Agents
Biofilms
Escherichia coli

Chemicals

1-naphthoic acid
Anti-Infective Agents
Anti-Bacterial Agents

Word Cloud

Created with Highcharts 10.0.0antimicrobialpolymersfacialamphiphilicresistanceAntimicrobialnaphthoicQACpotentmulti-drugresistantgram-negativeaeruginosapneumoniaebiofilmsmembraneFacialInspirednatureefficacymanypeptidesworkreportedbicyclicacidderivativesdifferentratioschargesringsinstalledontosidechainspolyglycidylmethacrylateSixquaternaryammonium-chargedpreparedinvestigatestructure-activityrelationshipdisplayedantibacterialactivityvariousMDRpathogensEscherichiacoliPseudomonasKlebsiellaAcinetobacterbaumanniiPolymersdemonstratedlowhemolysishighselectivityAdditionallyableeradicateestablishedkillmetabolicallyinactivedormantcellspermeabilizationdepolarizationresultsindicatedmechanismactiondisruptionTwoleadshowedMDR-PMDR-Kamphiphilespotentiallynewclassagentstackleplanktonicbiofilm-relatedinfectionsacid-derivedbacteriapeptidepolymerBiofilmamphiphilicity

Similar Articles

Cited By