The Effect of the Hip Flexion Angle in Osteonecrosis of the Femoral Head Based on China-Japan Friendship Hospital Classification - A Finite Element Study.

Ming-Tao Wen, Xue-Zhen Liang, Di Luo, Jia-Cheng Li, Bo-Zhao Yan, Bo-Wen Lu, Yan-Bo Guo, Bo Xu, Gang Li
Author Information
  1. Ming-Tao Wen: The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China. ORCID
  2. Xue-Zhen Liang: The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China. ORCID
  3. Di Luo: The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China. ORCID
  4. Jia-Cheng Li: The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China. ORCID
  5. Bo-Zhao Yan: The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China.
  6. Bo-Wen Lu: The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China.
  7. Yan-Bo Guo: The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China.
  8. Bo Xu: The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China.
  9. Gang Li: The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China. ORCID

Abstract

OBJECTIVE: The alteration in the mechanical environment of the necrotic area is the primary cause of the collapse observed in osteonecrosis of the femoral head (ONFH). This study aims to evaluate the biomechanical implications of the China-Japan Friendship Hospital (CJFH) classification system and hip flexion angles on the necrotic area in ONFH using finite element analysis (FEA). The goal is to provide valuable guidance for hip preservation treatments and serve as a reference for clinical diagnosis and therapeutic interventions.
METHODS: Hip tomography CT scan data from a healthy volunteer was used to create a 3D model of the left hip. The model was preprocessed and imported into Solidworks 2018, based on the CJFH classification. Material parameters and boundary conditions were applied to each fractal model in ANSYS 21.0. Von Mises stresses were calculated, and maximum deformation values were obtained to evaluate the biomechanical effects of the load on the necrotic area and post-necrotic femur, as well as assess each fractal model's collapse risk.
RESULTS: (1) At the same hip flexion angle, maximum deformation followed this order: M Type < C Type < L Type. The L3 type necrotic area experienced the most significant deformation at 0, 60, and 110° angles (1.121, 1.7913, and 1.8239 mm respectively). (2) Under the same CJFH classification, maximum deformation values increased with hip flexion angle (0 < 60 < 110°), suggesting a higher risk of collapse at larger angles. (3) Von Mises stress results showed that the maximum stress was not located in the necrotic area but near the inner and outer edge of the femoral neck, indicating decreased stiffness and strength of the subchondral bone after osteonecrosis.
CONCLUSION: The study found that femoral head collapse risk was higher when the necrotic area was located in the lateral column under the same stress load and flexion angle. Mechanical properties of the necrotic area changed, resulting in decreased bone strength and stiffness. Large-angle hip flexion is more likely to cause excessive deformation of the necrotic area; thus, ONFH patients should reduce or avoid large-angle hip flexion during weight-bearing training in rehabilitation activities.

Keywords

References

  1. BMC Musculoskelet Disord. 2019 Nov 15;20(1):544 [PMID: 31730452]
  2. J Orthop Surg Res. 2021 Jul 23;16(1):465 [PMID: 34301290]
  3. Chin Med J (Engl). 2018 Nov 05;131(21):2589-2598 [PMID: 30381593]
  4. Orthop Surg. 2022 May;14(5):831-839 [PMID: 35445585]
  5. J Orthop Translat. 2019 Nov 14;22:109-115 [PMID: 32440506]
  6. Arch Orthop Trauma Surg. 2016 Dec;136(12):1647-1655 [PMID: 27573979]
  7. EFORT Open Rev. 2019 Mar 15;4(3):85-97 [PMID: 30993010]
  8. J Am Acad Orthop Surg. 2014 Jul;22(7):455-64 [PMID: 24966252]
  9. Int Orthop. 2018 Jul;42(7):1631-1638 [PMID: 29728733]
  10. Trends Cell Biol. 2015 Sep;25(9):523-32 [PMID: 26045259]
  11. Ann Biomed Eng. 2013 Dec;41(12):2528-37 [PMID: 23793386]
  12. Bone Joint J. 2013 Nov;95-B(11 Suppl A):46-50 [PMID: 24187351]
  13. Eur Rev Med Pharmacol Sci. 2015 Aug;19(15):2766-74 [PMID: 26241528]
  14. Int Orthop. 2018 Jul;42(7):1615-1621 [PMID: 29704023]
  15. J Orthop Surg Res. 2020 Aug 17;15(1):335 [PMID: 32807218]
  16. BMC Musculoskelet Disord. 2020 Apr 6;21(1):211 [PMID: 32252708]
  17. Orthop Surg. 2021 Oct;13(7):2043-2050 [PMID: 34585838]
  18. J Orthop Translat. 2015 Oct 24;4:57-70 [PMID: 30035066]
  19. J Orthop Translat. 2017 Jan 10;11:62-72 [PMID: 29662770]
  20. J Pediatr Orthop. 2013 Mar;33(2):120-3 [PMID: 23389563]
  21. Int Orthop. 2016 Jul;40(7):1347-51 [PMID: 26728612]
  22. Radiographics. 2014 Jul-Aug;34(4):1003-28 [PMID: 25019438]
  23. J Arthroplasty. 2015 Sep;30(9):1555-60 [PMID: 25863890]
  24. Clin Orthop Relat Res. 2006 Jun;447:92-9 [PMID: 16505705]
  25. J Bone Miner Res. 2014 Nov;29(11):2307-22 [PMID: 25264148]
  26. BMC Musculoskelet Disord. 2020 May 2;21(1):281 [PMID: 32359349]
  27. J Orthop Res. 2021 Jul;39(7):1441-1451 [PMID: 33095462]
  28. J Cell Mol Med. 2021 Jun;25(11):5164-5176 [PMID: 33939272]
  29. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2020 Jan 15;34(1):10-15 [PMID: 31939227]
  30. J Orthop Surg Res. 2019 Sep 11;14(1):306 [PMID: 31511030]
  31. Int J Biol Sci. 2022 Jun 13;18(10):3961-3980 [PMID: 35844802]
  32. Chin Med J (Engl). 2017 Nov 5;130(21):2569-2574 [PMID: 29067956]
  33. Bone Joint J. 2020 Jul;102-B(7_Supple_B):122-128 [PMID: 32600203]
  34. J Arthroplasty. 2017 Nov;32(11):3544-3549 [PMID: 28712801]
  35. Autophagy. 2022 Sep;18(9):2229-2245 [PMID: 34964701]
  36. Orthop Surg. 2017 Feb;9(1):13-19 [PMID: 28276640]
  37. J Bone Joint Surg Am. 2022 Apr 6;104(Suppl 2):40-46 [PMID: 35389904]
  38. Orthop Clin North Am. 2019 Apr;50(2):139-149 [PMID: 30850073]

Grants

  1. 2020Q009/Development Plan of Shandong Traditional Chinese Medicine Science and Technology
  2. 2019WS577/evelopment Plan of Shandong Medical and Health Technology
  3. 81774333/National Natural Science Foundation of China
  4. 82074453/National Natural Science Foundation of China
  5. 82205154/National Natural Science Foundation of China
  6. 202019056/nnovation Program of Jinan Clinical Medicine Science and Technology

MeSH Term

Humans
Femur Head
Femur Head Necrosis
Finite Element Analysis
Friends
Japan
China

Word Cloud

Created with Highcharts 10.0.0necroticareahipflexiondeformationcollapsefemoralclassificationmaximum1angleheadONFHChina-JapanCJFHanglesHipmodelriskTypestresscauseosteonecrosisstudyevaluatebiomechanicalFriendshipHospitalelementanalysisfractal0VonMisesvaluesload<higherlocateddecreasedstiffnessstrengthboneOsteonecrosisFiniteOBJECTIVE:alterationmechanicalenvironmentprimaryobservedaimsimplicationssystemusingfiniteFEAgoalprovidevaluableguidancepreservationtreatmentsservereferenceclinicaldiagnosistherapeuticinterventionsMETHODS:tomographyCTscandatahealthyvolunteerusedcreate3DleftpreprocessedimportedSolidworks2018basedMaterialparametersboundaryconditionsappliedANSYS21stressescalculatedobtainedeffectspost-necroticfemurwellassessmodel'sRESULTS:followedorder:MCLL3typeexperiencedsignificant60110°12179138239 mmrespectively2increased0 < 60 < 110°suggestinglarger3resultsshowednearinnerouteredgeneckindicatingsubchondralCONCLUSION:foundlateralcolumnMechanicalpropertieschangedresultingLarge-anglelikelyexcessivethuspatientsreduceavoidlarge-angleweight-bearingtrainingrehabilitationactivitiesEffectFlexionAngleFemoralHeadBasedClassification-ElementStudyBiomechanicsfriendshiphospitalCollapse

Similar Articles

Cited By