Colocalization of corneal resistance factor GWAS loci with GTEx e/sQTLs highlights plausible candidate causal genes for keratoconus postnatal corneal stroma weakening.

Xinyi Jiang, Thibaud Boutin, Veronique Vitart
Author Information
  1. Xinyi Jiang: MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom.
  2. Thibaud Boutin: MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom.
  3. Veronique Vitart: MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom.

Abstract

Genome-wide association studies (GWAS) for corneal resistance factor (CRF) have identified 100s of loci and proved useful to uncover genetic determinants for keratoconus, a corneal ectasia of early-adulthood onset and common indication of corneal transplantation. In the current absence of studies to probe the impact of candidate causal variants in the cornea, we aimed to fill some of this knowledge gap by leveraging tissue-shared genetic effects. 181 CRF signals were examined for evidence of colocalization with genetic signals affecting steady-state gene transcription and splicing in adult, non-eye, tissues of the Genotype-Tissue Expression (GTEx) project. Expression of candidate causal genes thus nominated was evaluated in single cell transcriptomes from adult cornea, limbus and conjunctiva. Fine-mapping and colocalization of CRF and keratoconus GWAS signals was also deployed to support their sharing causal variants. 26.5% of CRF causal signals colocalized with GTEx v8 signals and nominated genes enriched in genes with high and specific expression in corneal stromal cells amongst tissues examined. Enrichment analyses carried out with nearest genes to all 181 CRF GWAS signals indicated that stromal cells of the limbus could be susceptible to signals that did not colocalize with GTEx's. These cells might not be well represented in GTEx and/or the genetic associations might have context specific effects. The causal signals shared with GTEx provide new insights into mediation of CRF genetic effects, including modulation of splicing events. Functionally relevant roles for several implicated genes' products in providing tensile strength, mechano-sensing and signaling make the corresponding genes and regulatory variants prime candidates to be validated and their roles and effects across tissues elucidated. Colocalization of CRF and keratoconus GWAS signals strengthened support for shared causal variants but also highlighted many ways into which likely true shared signals could be missed when using readily available GWAS summary statistics.

Keywords

References

  1. Science. 2020 Sep 11;369(6509):1318-1330 [PMID: 32913098]
  2. Nature. 2017 Oct 11;550(7675):204-213 [PMID: 29022597]
  3. Nat Genet. 2019 May;51(5):768-769 [PMID: 31043754]
  4. Sci Rep. 2019 Feb 27;9(1):2965 [PMID: 30814630]
  5. J Cell Sci. 2010 Dec 15;123(Pt 24):4195-200 [PMID: 21123617]
  6. Am J Hum Genet. 2016 Dec 1;99(6):1245-1260 [PMID: 27866706]
  7. J Biol Chem. 2004 Dec 17;279(51):53717-24 [PMID: 15485858]
  8. Bioinformatics. 2016 May 15;32(10):1493-501 [PMID: 26773131]
  9. Hum Mol Genet. 2015 Sep 1;24(17):5060-8 [PMID: 26049155]
  10. Sci Rep. 2019 Sep 16;9(1):13383 [PMID: 31527654]
  11. Cell Rep. 2020 Sep 22;32(12):108162 [PMID: 32966780]
  12. PLoS Genet. 2021 Sep 29;17(9):e1009440 [PMID: 34587156]
  13. Genome Biol. 2019 Mar 1;20(1):48 [PMID: 30823901]
  14. Bioinformatics. 2012 Jul 15;28(14):1919-20 [PMID: 22576172]
  15. J Cell Physiol. 2006 Nov;209(2):439-47 [PMID: 16883602]
  16. Eur Rev Med Pharmacol Sci. 2020 Jun;24(11):6270-6278 [PMID: 32572894]
  17. Nature. 2020 Aug;584(7820):244-251 [PMID: 32728217]
  18. Front Bioeng Biotechnol. 2022 Oct 03;10:953590 [PMID: 36263359]
  19. Hum Mol Genet. 2018 Jul 15;27(14):2454-2465 [PMID: 29726930]
  20. Elife. 2022 Dec 14;11: [PMID: 36515579]
  21. Genome Biol. 2021 Mar 5;22(1):76 [PMID: 33673841]
  22. Genome Biol. 2016 Jun 06;17(1):122 [PMID: 27268795]
  23. Mol Cell Biol. 2018 Jun 28;38(14): [PMID: 29712757]
  24. PLoS Genet. 2017 Mar 9;13(3):e1006646 [PMID: 28278150]
  25. Gigascience. 2015 Feb 25;4:7 [PMID: 25722852]
  26. J Biol Chem. 2002 Dec 20;277(51):49120-6 [PMID: 12354766]
  27. Ocul Surf. 2021 Jul;21:279-298 [PMID: 33865984]
  28. Elife. 2022 Nov 23;11: [PMID: 36416764]
  29. Eye (Lond). 2014 Feb;28(2):189-95 [PMID: 24357835]
  30. Elife. 2014 Jun 18;3: [PMID: 24941943]
  31. Commun Biol. 2020 Dec 11;3(1):762 [PMID: 33311554]
  32. Genome Biol. 2020 Sep 11;21(1):233 [PMID: 32912333]
  33. Neuromuscul Disord. 2008 Nov;18(11):843-56 [PMID: 18818079]
  34. Nat Genet. 2020 Dec;52(12):1355-1363 [PMID: 33199916]
  35. Nat Genet. 2019 Apr;51(4):592-599 [PMID: 30926968]
  36. Nat Commun. 2021 Feb 1;12(1):727 [PMID: 33526779]
  37. Exp Eye Res. 2007 Jan;84(1):3-12 [PMID: 16797007]
  38. Commun Biol. 2021 Mar 1;4(1):266 [PMID: 33649486]
  39. Commun Biol. 2020 Jun 11;3(1):301 [PMID: 32528159]
  40. Best Pract Res Clin Rheumatol. 2008 Mar;22(1):165-89 [PMID: 18328988]
  41. PLoS Genet. 2022 Jul 19;18(7):e1010299 [PMID: 35853082]
  42. Am J Hum Genet. 2016 Jun 2;98(6):1114-1129 [PMID: 27236919]
  43. Biochem J. 2003 Dec 1;376(Pt 2):525-35 [PMID: 14516276]
  44. Am J Hum Genet. 2021 Jan 7;108(1):25-35 [PMID: 33308443]
  45. Nat Commun. 2018 May 25;9(1):2068 [PMID: 29802342]
  46. Am J Hum Genet. 2021 Oct 7;108(10):1866-1879 [PMID: 34582792]
  47. Cancers (Basel). 2022 Aug 17;14(16): [PMID: 36010973]
  48. Nat Genet. 2014 Mar;46(3):310-5 [PMID: 24487276]
  49. Elife. 2020 Mar 09;9: [PMID: 32149610]
  50. Inflamm Regen. 2023 Jan 16;43(1):5 [PMID: 36647132]
  51. Invest Ophthalmol Vis Sci. 2010 Apr;51(4):1832-47 [PMID: 19933198]
  52. RNA. 2008 May;14(5):802-13 [PMID: 18369186]
  53. Invest Ophthalmol Vis Sci. 2005 Jun;46(6):1948-56 [PMID: 15914608]
  54. Hum Mol Genet. 2020 Nov 4;29(18):3154-3164 [PMID: 32716492]
  55. Nat Commun. 2021 Dec 8;12(1):7117 [PMID: 34880243]
  56. Cell Discov. 2022 Jul 12;8(1):66 [PMID: 35821117]
  57. Nat Genet. 2015 Sep;47(9):1091-8 [PMID: 26258848]
  58. Matrix Biol Plus. 2021 Dec 28;13:100099 [PMID: 35036900]
  59. Nat Commun. 2018 May 14;9(1):1864 [PMID: 29760442]
  60. Nat Rev Genet. 2015 Apr;16(4):197-212 [PMID: 25707927]
  61. Front Neurosci. 2016 Jan 27;10:16 [PMID: 26858593]
  62. Nature. 2020 Oct;586(7831):749-756 [PMID: 33087929]
  63. JAMA Ophthalmol. 2022 Jun 1;140(6):568-576 [PMID: 35446358]
  64. Nature. 2021 May;593(7858):238-243 [PMID: 33828297]
  65. Traffic. 2022 Jan;23(1):81-93 [PMID: 34761479]
  66. Nat Genet. 2013 Feb;45(2):155-63 [PMID: 23291589]
  67. Am J Hum Genet. 2017 Oct 5;101(4):539-551 [PMID: 28942963]
  68. Genome Biol. 2021 Jan 26;22(1):49 [PMID: 33499903]

Grants

  1. MC_UU_00035/15/Medical Research Council

Word Cloud

Created with Highcharts 10.0.0signalsCRFcausalGWAScornealgenesgenetickeratoconusGTExvariantseffectsstudiescandidatecorneacolocalizationtissuescellssharedassociationresistancefactorloci181examinedsplicingadultExpressionnominatedlimbusalsosupportspecificexpressionstromalmightrolesColocalizationGenome-wideidentified100sprovedusefuluncoverdeterminantsectasiaearly-adulthoodonsetcommonindicationtransplantationcurrentabsenceprobeimpactaimedfillknowledgegapleveragingtissue-sharedevidenceaffectingsteady-stategenetranscriptionnon-eyeGenotype-TissueprojectthusevaluatedsinglecelltranscriptomesconjunctivaFine-mappingdeployedsharing265%colocalizedv8enrichedhighamongstEnrichmentanalysescarriednearestindicatedsusceptiblecolocalizeGTEx'swellrepresentedand/orassociationscontextprovidenewinsightsmediationincludingmodulationeventsFunctionallyrelevantseveralimplicatedgenes'productsprovidingtensilestrengthmechano-sensingsignalingmakecorrespondingregulatoryprimecandidatesvalidatedacrosselucidatedstrengthenedhighlightedmanywayslikelytruemissedusingreadilyavailablesummarystatisticse/sQTLshighlightsplausiblepostnatalstromaweakeningbiomechanicsmin5–max8extracellularmatrixfine-mappinggenome-widegenotype–tissue

Similar Articles

Cited By