Robotic Surgery: A Comprehensive Review of the Literature and Current Trends.

Yeisson Rivero-Moreno, Sophia Echevarria, Carlos Vidal-Valderrama, Luigi Pianetti, Jesus Cordova-Guilarte, Jhon Navarro-Gonzalez, Jessica Acevedo-Rodríguez, Gabriela Dorado-Avila, Luisa Osorio-Romero, Carmen Chavez-Campos, Katheryn Acero-Alvarracín
Author Information
  1. Yeisson Rivero-Moreno: General Surgery, Universidad de Oriente, Barcelona, VEN.
  2. Sophia Echevarria: General Surgery, Universidad Mayor de San Simón, Cochabamba, BOL.
  3. Carlos Vidal-Valderrama: General Surgery, Universidad Autónoma de Baja California, Baja California, MEX.
  4. Luigi Pianetti: General Surgery, Universidad Nacional del Litoral, Argentina, ARG.
  5. Jesus Cordova-Guilarte: General Surgery, Universidad de Oriente, Barcelona, VEN.
  6. Jhon Navarro-Gonzalez: General Surgery, Universidad del Zulia, Maracaibo, VEN.
  7. Jessica Acevedo-Rodríguez: General Surgery, Tecnológico de Monterrey, Monterrey, MEX.
  8. Gabriela Dorado-Avila: General Surgery, Universidad Mayor de San Simón, Cochabamba, BOL.
  9. Luisa Osorio-Romero: General Surgery, Universidad Industrial de Santander, Colombia, COL.
  10. Carmen Chavez-Campos: General Surgery, Universidad Peruana de Ciencias Aplicadas, Lima, PER.
  11. Katheryn Acero-Alvarracín: General Surgery, Universidad de Guayaquil Facultad de Ciencias Médicas, Guayaquil, ECU.

Abstract

Robotic surgery (RS) is an evolution of minimally invasive surgery that combines medical science, robotics, and engineering. The first robots approved by the Food and Drug Administration (FDA) were the Da Vinci Surgical System and the ZEUS Robotic Surgical System, which have been improving over time. Through the decades, the equipment applied to RS had undergone a wide transformation as a response to the development of new techniques and facilities for the assembly and implementation of the own. RS has revolutionized the field of urology, enabling surgeons to perform complex procedures with greater precision and accuracy, and many other surgical specialties such as gynecology, general surgery, otolaryngology, cardiothoracic surgery, and neurosurgery. Several benefits, such as a better approach to the surgical site, a three-dimensional image that improves depth perception, and smaller scars, enhance range of motion, allowing the surgeon to conduct more complicated surgical operations, and reduced postoperative complications have made robotic-assisted surgery an increasingly popular approach. However, some points like the cost of surgical procedures, equipment-instrument, and maintenance are important aspects to consider. Machine learning will likely have a role to play in surgical training shortly through "automated performance metrics," where algorithms observe and "learn" individual surgeons' techniques, assess performance, and anticipate surgical outcomes with the potential to individualize surgical training and aid decision-making in real time.

Keywords

References

  1. Surg Innov. 2018 Jun;25(3):291-296 [PMID: 29701135]
  2. Urol Clin North Am. 2021 Feb;48(1):137-146 [PMID: 33218588]
  3. Jpn J Clin Oncol. 2019 May 1;49(5):404-411 [PMID: 30796834]
  4. MedGenMed. 2005 Sep 27;7(3):72 [PMID: 16369298]
  5. Jpn J Clin Oncol. 2004 May;34(5):227-37 [PMID: 15231856]
  6. Surg Endosc. 2021 May;35(5):2169-2177 [PMID: 32405893]
  7. Curr Opin Urol. 2020 Jan;30(1):48-54 [PMID: 31724999]
  8. Sci Robot. 2022 Jan 26;7(62):eabj2908 [PMID: 35080901]
  9. Int J Surg. 2019 Dec;72S:3-5 [PMID: 30885837]
  10. Sports Med Arthrosc Rev. 2014 Dec;22(4):202-5 [PMID: 25370874]
  11. J Thorac Dis. 2021 Mar;13(3):1971-1981 [PMID: 33841983]
  12. J Thorac Dis. 2021 Oct;13(10):6123-6128 [PMID: 34795963]
  13. Int J Colorectal Dis. 2023 Mar 29;38(1):86 [PMID: 36988723]
  14. Oper Neurosurg (Hagerstown). 2021 May 13;20(6):514-520 [PMID: 33982116]
  15. Arab J Urol. 2019 Apr 23;17(2):106-113 [PMID: 31285921]
  16. Surg Clin North Am. 2020 Apr;100(2):461-468 [PMID: 32169190]
  17. Surg Clin North Am. 2003 Dec;83(6):1305-15, vii-viii [PMID: 14712867]
  18. Curr Urol Rep. 2017 Aug;18(8):58 [PMID: 28647793]
  19. Eur Urol. 2010 Mar;57(3):453-8 [PMID: 19931979]
  20. Cochrane Database Syst Rev. 2012 Feb 15;(2):CD008978 [PMID: 22336855]
  21. Curr Opin Otolaryngol Head Neck Surg. 2009 Apr;17(2):126-31 [PMID: 19342953]
  22. Scand J Surg. 2009;98(2):125-9 [PMID: 19799050]
  23. J Endourol. 2012 Feb;26(2):135-9 [PMID: 22149187]
  24. World J Surg. 2016 Oct;40(10):2550-7 [PMID: 27177648]
  25. Interact Cardiovasc Thorac Surg. 2009 Sep;9(3):500-5 [PMID: 19542085]
  26. Indian J Otolaryngol Head Neck Surg. 2021 Mar;73(1):120-123 [PMID: 32837947]
  27. Obes Surg. 2018 Sep;28(9):2589-2596 [PMID: 29637410]
  28. J Bone Joint Surg Br. 2011 Oct;93(10):1296-9 [PMID: 21969424]
  29. Int J Med Robot. 2020 Aug;16(4):e2113 [PMID: 32304167]
  30. Am J Surg. 2004 Oct;188(4A Suppl):68S-75S [PMID: 15476655]
  31. JSLS. 2018 Oct-Dec;22(4): [PMID: 30524184]
  32. Surg Endosc. 2019 Jul;33(7):2217-2221 [PMID: 30327915]
  33. Int J Med Robot. 2019 Feb;15(1):e1962 [PMID: 30334328]
  34. J Robot Surg. 2010 Sep;4(3):141-7 [PMID: 27638753]
  35. Front Pediatr. 2019 Mar 28;7:94 [PMID: 30984719]
  36. JAMA. 2022 Jun 7;327(21):2092-2103 [PMID: 35569079]
  37. Am J Surg. 2020 Dec;220(6):1445-1450 [PMID: 32917364]
  38. Surg Endosc. 2002 Oct;16(10):1389-402 [PMID: 12140630]
  39. Ochsner J. 2013 Winter;13(4):517-24 [PMID: 24358000]
  40. Ann R Coll Surg Engl. 2018 Sep;100(Suppl 7):22-33 [PMID: 30179050]
  41. J Robot Surg. 2010 Dec;4(4):211-6 [PMID: 27627947]
  42. Surg Endosc. 2018 Mar;32(3):1104-1110 [PMID: 29218671]
  43. Jt Dis Relat Surg. 2020;31(3):653-655 [PMID: 32962606]
  44. Surg Clin North Am. 2003 Dec;83(6):1293-304, vii [PMID: 14712866]
  45. Am J Surg. 2004 Oct;188(4A Suppl):2S-15S [PMID: 15476646]
  46. J Endourol. 2008 Sep;22(9):2165-8 [PMID: 18811574]
  47. Int J Med Robot. 2022 Aug;18(4):e2409 [PMID: 35476899]
  48. Surg Endosc. 2020 Jan;34(1):361-367 [PMID: 30953199]
  49. Cir Cir. 2020;88(1):107-116 [PMID: 31967609]
  50. Cureus. 2022 Oct 21;14(10):e30569 [PMID: 36415384]
  51. BMC Musculoskelet Disord. 2021 Nov 22;22(1):968 [PMID: 34809652]
  52. Int J Surg. 2021 Nov;95:106151 [PMID: 34695601]
  53. Robot Surg. 2019 Nov 07;6:9-23 [PMID: 31807602]
  54. Oral Oncol. 2020 Feb;101:104510 [PMID: 31841882]
  55. Ann Cardiothorac Surg. 2019 Mar;8(2):210-217 [PMID: 31032204]
  56. World J Emerg Surg. 2022 Jan 20;17(1):4 [PMID: 35057836]
  57. Rev Col Bras Cir. 2021 Jan 13;48:e20202798 [PMID: 33470371]

Word Cloud

Created with Highcharts 10.0.0surgicalsurgeryRoboticRSproceduresminimallyinvasiveSurgicalSystemtimetechniquesurologyapproachrobotic-assistedtrainingperformanceevolutioncombinesmedicalscienceroboticsengineeringfirstrobotsapprovedFoodDrugAdministrationFDADaVinciZEUSimprovingdecadesequipmentappliedundergonewidetransformationresponsedevelopmentnewfacilitiesassemblyimplementationrevolutionizedfieldenablingsurgeonsperformcomplexgreaterprecisionaccuracymanyspecialtiesgynecologygeneralotolaryngologycardiothoracicneurosurgery Severalbenefitsbettersitethree-dimensionalimageimprovesdepthperceptionsmallerscarsenhancerangemotionallowingsurgeonconductcomplicatedoperationsreducedpostoperativecomplicationsmadeincreasinglypopularHoweverpointslikecostequipment-instrumentmaintenanceimportantaspectsconsiderMachinelearningwilllikelyroleplayshortly"automatedmetrics"algorithmsobserve"learn"individualsurgeons'assessanticipateoutcomespotentialindividualizeaiddecision-makingrealSurgery:ComprehensiveReviewLiteratureCurrentTrendsdavincisystemrobot-enhanced

Similar Articles

Cited By