Drought Tolerance of Legumes: Physiology and the Role of the Microbiome.

Ivan S Petrushin, Ilia A Vasilev, Yulia A Markova
Author Information
  1. Ivan S Petrushin: Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk 664033, Russia. ORCID
  2. Ilia A Vasilev: Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk 664033, Russia.
  3. Yulia A Markova: Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk 664033, Russia.

Abstract

Water scarcity and global warming make drought-tolerant plant species more in-demand than ever. The most drastic damage exerted by drought occurs during the critical growth stages of seed development and reproduction. In the course of their evolution, plants form a variety of drought-tolerance mechanisms, including recruiting beneficial microorganisms. Legumes (one of the three largest groups of higher plants) have unique features and the potential to adapt to abiotic stress. The available literature discusses the genetic (breeding) and physiological aspects of drought tolerance in legumes, neglecting the role of the microbiome. Our review aims to fill this gap: starting with the physiological mechanisms of legume drought adaptation, we describe the symbiotic relationship of the plant host with the microbial community and its role in facing drought. We consider two types of studies related to microbiomes in low-water conditions: comparisons and microbiome engineering (modulation). The first type of research includes diversity shifts and the isolation of microorganisms from the various plant niches to which they belong. The second type focuses on manipulating the plant holobiont through microbiome engineering-a promising biotech strategy to improve the yield and stress-resistance of legumes.

Keywords

References

  1. Plant Physiol Biochem. 2022 Nov 15;191:55-66 [PMID: 36183672]
  2. FEMS Microbiol Ecol. 2022 Mar 16;98(3): [PMID: 35195242]
  3. PLoS One. 2022 Feb 4;17(2):e0262932 [PMID: 35120147]
  4. Plants (Basel). 2022 Nov 08;11(22): [PMID: 36432739]
  5. Plant Cell Rep. 2020 Jan;39(1):3-17 [PMID: 31346716]
  6. Plant Commun. 2021 Aug 04;3(1):100228 [PMID: 35059626]
  7. Microb Ecol. 2017 Feb;73(2):394-403 [PMID: 27655524]
  8. Trends Plant Sci. 2019 Mar;24(3):194-198 [PMID: 30670324]
  9. Nat Ecol Evol. 2021 Jul;5(7):1011-1023 [PMID: 33986540]
  10. Front Microbiol. 2023 Jan 26;13:1046201 [PMID: 36777023]
  11. Metabolites. 2021 Jun 02;11(6): [PMID: 34199628]
  12. Plants (Basel). 2021 Sep 10;10(9): [PMID: 34579406]
  13. mBio. 2020 Aug 25;11(4): [PMID: 32843548]
  14. Nat Plants. 2021 Aug;7(8):1065-1077 [PMID: 34294907]
  15. Heliyon. 2023 Feb 17;9(3):e13804 [PMID: 36895350]
  16. Int J Mol Sci. 2019 May 08;20(9): [PMID: 31071918]
  17. Plant Physiol. 2023 Mar 17;191(3):1884-1912 [PMID: 36477336]
  18. FEMS Microbiol Ecol. 2022 Mar 9;98(2): [PMID: 35142840]
  19. Trends Biotechnol. 2020 Dec;38(12):1385-1396 [PMID: 32451122]
  20. Microbiol Spectr. 2022 Apr 27;10(2):e0021021 [PMID: 35377190]
  21. Environ Microbiol. 2022 Jan;24(1):324-340 [PMID: 35001476]
  22. FEMS Microbiol Ecol. 2021 Feb 25;97(2): [PMID: 33155054]
  23. Plant Physiol Biochem. 2021 Aug;165:19-35 [PMID: 34034158]
  24. Sci Adv. 2023 Jan 13;9(2):eade1150 [PMID: 36638166]
  25. Plant J. 2019 Oct;100(2):384-398 [PMID: 31271689]
  26. AoB Plants. 2021 Jun 09;13(4):plab026 [PMID: 34234933]
  27. Front Microbiol. 2022 Mar 16;12:798525 [PMID: 35368293]
  28. J Adv Res. 2022 Sep;40:45-58 [PMID: 36100333]
  29. 3 Biotech. 2019 Jul;9(7):277 [PMID: 31245241]
  30. Proc Natl Acad Sci U S A. 2016 Jun 7;113(23):6496-501 [PMID: 27217575]
  31. Ecol Lett. 2022 Jan;25(1):189-201 [PMID: 34749426]
  32. Proc Natl Acad Sci U S A. 2018 Feb 06;115(6):E1157-E1165 [PMID: 29358405]
  33. Environ Microbiol. 2015 Feb;17(2):316-31 [PMID: 24571749]
  34. Curr Opin Microbiol. 2019 Jun;49:1-6 [PMID: 31454709]
  35. PLoS One. 2019 Dec 4;14(12):e0225933 [PMID: 31800619]
  36. Physiol Plant. 2021 Aug;172(4):2153-2169 [PMID: 33964177]
  37. Sci Rep. 2021 Dec 17;11(1):24142 [PMID: 34921154]
  38. J Appl Microbiol. 2022 Dec;133(6):3777-3789 [PMID: 36106416]
  39. PLoS One. 2023 Aug 24;18(8):e0286285 [PMID: 37616263]
  40. PLoS One. 2017 Nov 8;12(11):e0187913 [PMID: 29117218]
  41. Front Plant Sci. 2022 Dec 21;13:1064058 [PMID: 36618624]
  42. Front Microbiol. 2023 Mar 13;14:1065302 [PMID: 36992926]
  43. Microbiol Spectr. 2022 Aug 31;10(4):e0097922 [PMID: 35863006]
  44. Proc Natl Acad Sci U S A. 2018 May 1;115(18):E4284-E4293 [PMID: 29666229]
  45. Int J Mol Sci. 2019 May 23;20(10): [PMID: 31126133]
  46. Front Plant Sci. 2023 Jun 12;14:1220535 [PMID: 37377800]
  47. Funct Plant Biol. 2022 Mar;49(4):405-420 [PMID: 35209990]
  48. Appl Environ Microbiol. 2020 May 19;86(11): [PMID: 32220847]
  49. Plants (Basel). 2023 Jul 03;12(13): [PMID: 37447095]
  50. Nat Commun. 2021 May 28;12(1):3209 [PMID: 34050180]
  51. Plant Mol Biol. 2022 Jul;109(4-5):447-467 [PMID: 34859329]
  52. Front Microbiol. 2022 Feb 17;13:825377 [PMID: 35250941]
  53. mSystems. 2021 Dec 21;6(6):e0112521 [PMID: 34846165]
  54. Funct Plant Biol. 2003 Mar;30(3):239-264 [PMID: 32689007]
  55. Planta. 2022 Sep 20;256(5):85 [PMID: 36125564]
  56. 3 Biotech. 2017 Oct;7(5):315 [PMID: 28955612]

Grants

  1. 23-26-00204/Russian Science Foundation

Word Cloud

Created with Highcharts 10.0.0droughtplantmicrobiomelegumesplantsmechanismsmicroorganismsstressphysiologicalroleadaptationtypeWaterscarcityglobalwarmingmakedrought-tolerantspeciesin-demandeverdrasticdamageexertedoccurscriticalgrowthstagesseeddevelopmentreproductioncourseevolutionformvarietydrought-toleranceincludingrecruitingbeneficialLegumesonethreelargestgroupshigheruniquefeaturespotentialadaptabioticavailableliteraturediscussesgeneticbreedingaspectstoleranceneglectingreviewaimsfillgap:startinglegumedescribesymbioticrelationshiphostmicrobialcommunityfacingconsidertwotypesstudiesrelatedmicrobiomeslow-waterconditions:comparisonsengineeringmodulationfirstresearchincludesdiversityshiftsisolationvariousnichesbelongsecondfocusesmanipulatingholobiontengineering-apromisingbiotechstrategyimproveyieldstress-resistanceDroughtToleranceLegumes:PhysiologyRoleMicrobiomeFabaceae

Similar Articles

Cited By