Propensity of selecting mutant parasites for the antimalarial drug cabamiquine.
Eva Stadler, Mohamed Maiga, Lukas Friedrich, Vandana Thathy, Claudia Demarta-Gatsi, Antoine Dara, Fanta Sogore, Josefine Striepen, Claude Oeuvray, Abdoulaye A Djimdé, Marcus C S Lee, Laurent Dembélé, David A Fidock, David S Khoury, Thomas Spangenberg
Author Information
Eva Stadler: The Kirby Institute, UNSW Sydney, Kensington, NSW, 2052, Australia. ORCID
Mohamed Maiga: Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Faculté de Pharmacie, Malaria Research and Training Center (MRTC), Point G, PB1805, Bamako, Mali. ORCID
Lukas Friedrich: Medicinal Chemistry & Drug Design Global Research & Development, Discovery Technologies, Merck Healthcare, 64293, Darmstadt, Germany.
Vandana Thathy: Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, 10032, USA.
Claudia Demarta-Gatsi: Global Health Institute of Merck, Ares Trading S.A., (an affiliate of Merck KGaA, Darmstadt, Germany), 1262, Eysins, Switzerland. ORCID
Antoine Dara: Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Faculté de Pharmacie, Malaria Research and Training Center (MRTC), Point G, PB1805, Bamako, Mali. ORCID
Fanta Sogore: Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Faculté de Pharmacie, Malaria Research and Training Center (MRTC), Point G, PB1805, Bamako, Mali.
Josefine Striepen: Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, 10032, USA. ORCID
Claude Oeuvray: Global Health Institute of Merck, Ares Trading S.A., (an affiliate of Merck KGaA, Darmstadt, Germany), 1262, Eysins, Switzerland.
Abdoulaye A Djimdé: Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Faculté de Pharmacie, Malaria Research and Training Center (MRTC), Point G, PB1805, Bamako, Mali. ORCID
Marcus C S Lee: Wellcome Sanger Institute, Wellcome Genome Campus, CB10 1SA, Hinxton, UK. ORCID
Laurent Dembélé: Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Faculté de Pharmacie, Malaria Research and Training Center (MRTC), Point G, PB1805, Bamako, Mali. laurent@icermali.org.
David A Fidock: Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, 10032, USA. df2260@cumc.columbia.edu. ORCID
David S Khoury: The Kirby Institute, UNSW Sydney, Kensington, NSW, 2052, Australia. dkhoury@kirby.unsw.edu.au. ORCID
Thomas Spangenberg: Global Health Institute of Merck, Ares Trading S.A., (an affiliate of Merck KGaA, Darmstadt, Germany), 1262, Eysins, Switzerland. thomas.spangenberg@merckgroup.com. ORCID
We report an analysis of the propensity of the antimalarial agent cabamiquine, a Plasmodium-specific eukaryotic elongation factor 2 inhibitor, to select for resistant Plasmodium falciparum parasites. Through in vitro studies of laboratory strains and clinical isolates, a humanized mouse model, and volunteer infection studies, we identified resistance-associated mutations at 11 amino acid positions. Of these, six (55%) were present in more than one infection model, indicating translatability across models. Mathematical modelling suggested that resistant mutants were likely pre-existent at the time of drug exposure across studies. Here, we estimated a wide range of frequencies of resistant mutants across the different infection models, much of which can be attributed to stochastic differences resulting from experimental design choices. Structural modelling implicates binding of cabamiquine to a shallow mRNA binding site adjacent to two of the most frequently identified resistance mutations.
References
Blasco, B., Leroy, D. & Fidock, D. A. Antimalarial drug resistance: linking Plasmodium falciparum parasite biology to the clinic. Nat. Med. 23, 917–928 (2017).
[PMID: 28777791]
World Health Organization. Artemisinin resistance and artemisinin-based combination therapy efficacy: status report. https://www.who.int/docs/default-source/documents/publications/gmp/who-cds-gmp-2019-17-eng.pdf?ua=1 (2018).
van der Pluijm, R. W. et al. Determinants of dihydroartemisinin-piperaquine treatment failure in Plasmodium falciparum malaria in Cambodia, Thailand, and Vietnam: a prospective clinical, pharmacological, and genetic study. Lancet Infect. Dis. 19, 952–961 (2019).
[PMID: 31345710]
Ding, X. C., Ubben, D. & Wells, T. N. A framework for assessing the risk of resistance for anti-malarials in development. Malar. J. 11, 292 (2012).
[PMID: 22913649]
McCarthy, J. S. et al. A pilot randomised trial of induced blood-stage Plasmodium falciparum infections in healthy volunteers for testing efficacy of new antimalarial drugs. PLoS ONE 6, e21914 (2011).
[PMID: 21887214]
Goldberg, D. E., Siliciano, R. F. & Jacobs, W. R. Jr Outwitting evolution: fighting drug-resistant TB, malaria, and HIV. Cell 148, 1271–1283 (2012).
[PMID: 22424234]
Baragaña, B. et al. A novel multiple-stage antimalarial agent that inhibits protein synthesis. Nature 522, 315–320 (2015).
[PMID: 26085270]
Fan, A. & Sharp, P. P. Inhibitors of eukaryotic translational machinery as therapeutic agents. J. Med. Chem. 64, 2436–2465 (2021).
[PMID: 33592144]
Rottmann, M. et al. Preclinical antimalarial combination study of M5717, a Plasmodium falciparum elongation Factor 2 inhibitor, and pyronaridine, a Hemozoin Formation inhibitor. Antimicrob. Agents Chemother. 64, e02181 (2020).
[PMID: 32041711]
McCarthy, J. S. et al. Safety, pharmacokinetics, and antimalarial activity of the novel eukaryotic translation elongation factor 2 inhibitor M5717: a first-in-human, randomised, placebo-controlled, double-blind, single ascending dose study and volunteer infection study. Lancet Infect. Dis. 21, 1713–1724 (2021).
[PMID: 34715032]
Sanz, L. M. et al. P. falciparum in vitro killing rates allow to discriminate between different antimalarial mode-of-action. PLoS ONE 7, e30949 (2012).
[PMID: 22383983]
Zerio, C. J. et al. Discovery of an eIF4A inhibitor with a novel mechanism of action. J. Med. Chem. 64, 15727–15746 (2021).
[PMID: 34676755]
Llanos-Cuentas, A. et al. Antimalarial activity of single-dose DSM265, a novel plasmodium dihydroorotate dehydrogenase inhibitor, in patients with uncomplicated Plasmodium falciparum or Plasmodium vivax malaria infection: a proof-of-concept, open-label, phase 2a study. Lancet Infect. Dis. 18, 874–883 (2018).
[PMID: 29909069]
Phillips, M. A. et al. A long-duration dihydroorotate dehydrogenase inhibitor (DSM265) for prevention and treatment of malaria. Sci. Transl. Med. 7, 296ra111 (2015).
[PMID: 26180101]
White, J. et al. Identification and mechanistic understanding of dihydroorotate dehydrogenase point mutations in Plasmodium falciparum that confer in vitro resistance to the clinical candidate DSM265. ACS Infect. Dis. 5, 90–101 (2019).
[PMID: 30375858]
Mandt, R. E. K. et al. In vitro selection predicts malaria parasite resistance to dihydroorotate dehydrogenase inhibitors in a mouse infection model. Sci. Transl. Med. 11, eaav1636 (2019).
[PMID: 31801884]
McCarthy, J. S. et al. Safety, tolerability, pharmacokinetics, and activity of the novel long-acting antimalarial DSM265: a two-part first-in-human phase 1a/1b randomised study. Lancet Infect. Dis. 17, 626–635 (2017).
[PMID: 28363636]
Lee, H. Y. et al. Modeling sequence evolution in acute HIV-1 infection. J. Theor. Biol. 261, 341–360 (2009).
[PMID: 19660475]
Stepniewska, K. & White, N. J. Pharmacokinetic determinants of the window of selection for antimalarial drug resistance. Antimicrob. Agents Chemother. 52, 1589–1596 (2008).
[PMID: 18299409]
Khoury, D. S. et al. The interdisciplinary approaches to malaria consortium. Artemisinin resistance and the unique selection pressure of a short-acting antimalarial. Trends Parasitol. 36, 884–887 (2020).
[PMID: 32771284]
Hastings, I. M., Watkins, W. M. & White, N. J. The evolution of drug-resistant malaria: the role of drug elimination half-life. Philos. Trans. R. Soc. Lond. B Biol. Sci. 357, 505–519 (2002).
[PMID: 12028788]
Chait, R., Craney, A. & Kishony, R. Antibiotic interactions that select against resistance. Nature 446, 668–671 (2007).
[PMID: 17410176]
Brown, A. C. & Guler, J. L. From circulation to cultivation: Plasmodium in vivo versus in vitro. Trends Parasitol. 36, 914–926 (2020).
[PMID: 32958385]
Goheen, M. M., Campino, S. & Cerami, C. The role of the red blood cell in host defence against falciparum malaria: an expanding repertoire of evolutionary alterations. Br. J. Haematol. 179, 543–556 (2017).
[PMID: 28832963]
Band, G. et al. Malaria protection due to sickle haemoglobin depends on parasite genotype. Nature 602, 106–111 (2022).
[PMID: 34883497]
Ebel, E. R., Kuypers, F. A., Lin, C., Petrov, D. A. & Egan, E. S. Common host variation drives malaria parasite fitness in healthy human red cells. eLife 10, e69808 (2021).
[PMID: 34553687]
Huijben, S., Chan, B. H. K., Nelson, W. A. & Read, A. F. The impact of within-host ecology on the fitness of a drug-resistant parasite. Evol. Med. Public Health 2018, 127–137 (2018).
[PMID: 30087774]
Austin, D. J., White, N. J. & Anderson, R. M. The dynamics of drug action on the within-host population growth of infectious agents: melding pharmacokinetics with pathogen population dynamics. J. Theor. Biol. 194, 313–339 (1998).
[PMID: 9778442]
Wernsdorfer, W. H. Drug resistant malaria. Endeavour 8, 166–171 (1984).
[PMID: 6210193]
Dembele, L. et al. The plasmodium PI(4)K inhibitor KDU691 selectively inhibits dihydroartemisinin-pretreated Plasmodium falciparum ring-stage parasites. Sci. Rep. 7, 2325 (2017).
[PMID: 28539634]
Trager, W. & Jensen, J. B. Human malaria parasites in continuous culture. Science 193, 673–675 (1976).
[PMID: 781840]
Doolan, D. L. Malaria Methods and Protocols (Springer Science+Business Media, 2002).
Lambros, C. & Vanderberg, J. P. Synchronization of Plasmodium falciparum erythrocytic stages in culture. J. Parasitol. 65, 418–420 (1979).
[PMID: 383936]
Jiménez-Díaz, M. B. et al. Improved murine model of malaria using Plasmodium falciparum competent strains and non-myelodepleted NOD-scid IL2Rgammanull mice engrafted with human erythrocytes. Antimicrob. Agents Chemother. 53, 4533–4536 (2009).
[PMID: 19596869]
Rottmann, M. et al. Preclinical antimalarial combination study of M5717, a Plasmodium falciparum elongation factor 2 inhibitor, and pyronaridine, a hemozoin formation inhibitor. Antimicrob. Agents Chemother. 64, e02181–19 (2020).
[PMID: 32041711]
Angulo-Barturen, I. et al. A murine model of falciparum-malaria by in vivo selection of competent strains in non-myelodepleted mice engrafted with human erythrocytes. PLoS ONE 3, e2252 (2008).
[PMID: 18493601]
Alexander, H. K. & MacLean, R. C. Stochastic bacterial population dynamics restrict the establishment of antibiotic resistance from single cells. Proc. Natl Acad. Sci. USA 117, 19455–19464 (2020).
[PMID: 32703812]
Bopp, S. E. et al. Mitotic evolution of Plasmodium falciparum shows a stable core genome but recombination in antigen families. PLOS Genet 9, e1003293 (2013).
[PMID: 23408914]
Claessens, A. et al. Generation of antigenic diversity in Plasmodium falciparum by structured rearrangement of Var genes during mitosis. PLOS Genet 10, e1004812 (2014).
[PMID: 25521112]
Hamilton, W. L. et al. Extreme mutation bias and high AT content in Plasmodium falciparum. Nucleic Acids Res. 45, 1889–1901 (2017).
[PMID: 27994033]
Lee, A. H. & Fidock, D. A. Evidence of a mild mutator phenotype in Cambodian Plasmodium falciparum malaria parasites. PLoS ONE 11, e0154166 (2016).
[PMID: 27100094]
Du, Z. et al. The trRosetta server for fast and accurate protein structure prediction. Nat. Protoc. 16, 5634–5651 (2021).
[PMID: 34759384]
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).
[PMID: 34265844]
Sastry, G. M., Adzhigirey, M., Day, T., Annabhimoju, R. & Sherman, W. Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J. Comput. Aided Mol. Des. 27, 221–234 (2013).
[PMID: 23579614]
Halgren, T. A. Identifying and characterizing binding sites and assessing druggability. J. Chem. Inf. Model. 49, 377–389 (2009).
[PMID: 19434839]
Halgren, T. A. et al. Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J. Med. Chem. 47, 1750–1759 (2004).
[PMID: 15027866]