SeizFt: Interpretable Machine Learning for Seizure Detection Using Wearables.

Irfan Al-Hussaini, Cassie S Mitchell
Author Information
  1. Irfan Al-Hussaini: School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA. ORCID
  2. Cassie S Mitchell: Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA. ORCID

Abstract

This work presents SeizFt-a novel seizure detection framework that utilizes machine learning to automatically detect seizures using wearable SensorDot EEG data. Inspired by interpretable sleep staging, our novel approach employs a unique combination of data augmentation, meaningful feature extraction, and an ensemble of decision trees to improve resilience to variations in EEG and to increase the capacity to generalize to unseen data. Fourier Transform (FT) Surrogates were utilized to increase sample size and improve the class balance between labeled non-seizure and seizure epochs. To enhance model stability and accuracy, SeizFt utilizes an ensemble of decision trees through the CatBoost classifier to classify each second of EEG recording as seizure or non-seizure. The SeizIt1 dataset was used for training, and the SeizIt2 dataset for validation and testing. Model performance for seizure detection was evaluated using two primary metrics: sensitivity using the any-overlap method (OVLP) and False Alarm (FA) rate using epoch-based scoring (EPOCH). Notably, SeizFt placed first among an array of state-of-the-art seizure detection algorithms as part of the Seizure Detection Grand Challenge at the 2023 International Conference on Acoustics, Speech, and Signal Processing (ICASSP). SeizFt outperformed state-of-the-art black-box models in accurate seizure detection and minimized false alarms, obtaining a total score of 40.15, combining OVLP and EPOCH across two tasks and representing an improvement of ~30% from the next best approach. The interpretability of SeizFt is a key advantage, as it fosters trust and accountability among healthcare professionals. The most predictive seizure detection features extracted from SeizFt were: delta wave, interquartile range, standard deviation, total absolute power, theta wave, the ratio of delta to theta, binned entropy, Hjorth complexity, delta + theta, and Higuchi fractal dimension. In conclusion, the successful application of SeizFt to wearable SensorDot data suggests its potential for real-time, continuous monitoring to improve personalized medicine for epilepsy.

Keywords

References

  1. Neurophysiol Clin. 2023 Apr;53(2):102850 [PMID: 36913775]
  2. Sensors (Basel). 2017 Dec 23;18(1): [PMID: 29295522]
  3. Curr Neurol Neurosci Rep. 2018 May 23;18(7):40 [PMID: 29796939]
  4. Front Neuroinform. 2018 Nov 14;12:83 [PMID: 30487743]
  5. IEEE Trans Neural Syst Rehabil Eng. 2022;30:668-677 [PMID: 35245199]
  6. Seizure. 2016 Mar;36:4-15 [PMID: 26859097]
  7. J Neurosci Methods. 2022 Mar 1;369:109483 [PMID: 35051438]
  8. Hum Brain Mapp. 2017 Nov;38(11):5391-5420 [PMID: 28782865]
  9. Sci Rep. 2022 Jul 29;12(1):13010 [PMID: 35906248]
  10. Brain. 2014 Aug;137(Pt 8):2210-30 [PMID: 24919973]
  11. Epilepsia. 2008;49 Suppl 1:19-25 [PMID: 18184150]
  12. Glob Adv Health Med. 2019 Feb 27;8:2164956119831221 [PMID: 30834177]
  13. Clin Neurophysiol. 2008 Jun;119(6):1248-61 [PMID: 18381249]
  14. Nat Neurosci. 2015 Mar;18(3):351-9 [PMID: 25710837]
  15. Nat Neurosci. 2015 Mar;18(3):367-72 [PMID: 25710839]
  16. Front Neurol. 2021 Jul 13;12:690404 [PMID: 34326807]
  17. Epilepsia. 1992;33 Suppl 4:S6-14 [PMID: 1425495]
  18. Neurology. 2016 Aug 30;87(9):935-44 [PMID: 27466474]
  19. Brain Inform. 2022 May 27;9(1):11 [PMID: 35622175]
  20. Epilepsy Behav. 2020 Apr;105:106963 [PMID: 32092459]
  21. Epilepsy Behav. 2019 Sep;98(Pt A):188-194 [PMID: 31377660]
  22. Nat Methods. 2020 Mar;17(3):261-272 [PMID: 32015543]
  23. Proc IEEE Int Conf Acoust Speech Signal Process. 2023 Jun;2023: [PMID: 38682049]
  24. ACS Appl Electron Mater. 2023 Jun 01;5(6):3048-3058 [PMID: 37396057]
  25. Semin Fetal Neonatal Med. 2015 Jun;20(3):149-53 [PMID: 25660396]
  26. IEEE Trans Neural Syst Rehabil Eng. 2022;30:135-145 [PMID: 35030083]
  27. Sci Rep. 2020 Dec 11;10(1):21833 [PMID: 33311533]
  28. J Neural Eng. 2022 Feb 28;19(1): [PMID: 35158349]
  29. Front Neurosci. 2013 Dec 26;7:267 [PMID: 24431986]
  30. IEEE J Biomed Health Inform. 2019 Jan;23(1):83-94 [PMID: 30624207]

Grants

  1. R01 AG056169/NIA NIH HHS
  2. R56 AG056169/NIA NIH HHS
  3. U19 AG065169/NIA NIH HHS
  4. U19-AG056169/NIH HHS

Word Cloud

Created with Highcharts 10.0.0seizureSeizFtdetectionusingEEGdataimprovedeltathetanovelutilizesmachinelearningwearableSensorDotapproachaugmentationensembledecisiontreesincreasenon-seizuredatasettwoOVLPEPOCHamongstate-of-the-artSeizureDetectiontotalinterpretabilitywaveworkpresentsSeizFt-aframeworkautomaticallydetectseizuresInspiredinterpretablesleepstagingemploysuniquecombinationmeaningfulfeatureextractionresiliencevariationscapacitygeneralizeunseenFourierTransformFTSurrogatesutilizedsamplesizeclassbalancelabeledepochsenhancemodelstabilityaccuracyCatBoostclassifierclassifysecondrecordingSeizIt1usedtrainingSeizIt2validationtestingModelperformanceevaluatedprimarymetrics:sensitivityany-overlapmethodFalseAlarmFArateepoch-basedscoringNotablyplacedfirstarrayalgorithmspartGrandChallenge2023InternationalConferenceAcousticsSpeechSignalProcessingICASSPoutperformedblack-boxmodelsaccurateminimizedfalsealarmsobtainingscore4015combiningacrosstasksrepresentingimprovement~30%nextbestkeyadvantagefosterstrustaccountabilityhealthcareprofessionalspredictivefeaturesextractedwere:interquartilerangestandarddeviationabsolutepowerratiobinnedentropyHjorthcomplexity+Higuchifractaldimensionconclusionsuccessfulapplicationsuggestspotentialreal-timecontinuousmonitoringpersonalizedmedicineepilepsySeizFt:InterpretableMachineLearningUsingWearablesartificialintelligenceelectroencephalogramimbalancedclassesxai

Similar Articles

Cited By