The Protective Effect and Mechanism of a Phytochemical Extract from the Wild Vegetable Shutou ( Buch.) against Acetaminophen-Induced Liver Injury in Mice.

Meimei Shan, Qian Ma, Yilin Sun, Fengyi Gao, Shengbao Cai
Author Information
  1. Meimei Shan: Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
  2. Qian Ma: Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
  3. Yilin Sun: Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
  4. Fengyi Gao: College of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China.
  5. Shengbao Cai: Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China. ORCID

Abstract

Acetaminophen (APAP) abuse is a common public health problem which can cause severe liver damage. However, strategies for dealing with this situation safely and effectively are very limited. The goal of the current work was to evaluate the protection and potential molecular mechanisms of an ethanol extract from shoots of the wild vegetable shutou ( Buch.) (ECS) against APAP-induced liver damage in mice. Mice orally received ECS for seven days (300 or 600 mg/kg b.w. per day) before being intraperitoneally injected with APAP (250 mg/kg). Results exhibited that ECS obviously decreased the content of alkaline phosphatase, alanine aminotransferase, aspartate transaminase, and malondialdehyde ( < 0.05). Catalase and superoxide dismutase were notably restored ( < 0.05), and the content of reduced glutathione was obviously increased ( < 0.05). Moreover, ECS significantly inhibited the secretion of interleukin-1β and tumor necrosis factor-α ( < 0.05). Further analyses of the mechanisms showed that ECS may alleviate oxidative stress in the liver by increasing the expression of the nuclear factor erythroid-2-related factor 2 and NADH quinone oxidoreductase 1 proteins, and may suppress liver inflammation by inhibiting the expression of the phosphorylated-inhibitor kappa B alpha/inhibitor kappa B alpha, phosphorylated-nuclear factor κB/nuclear factor κB, and cyclooxygenase-2 proteins. Meanwhile, ECS inhibited hepatocyte apoptosis by enhancing B-cell lymphoma gene 2 and suppressing Bcl-2-associated X protein. In summary, ECS may be used as a dietary supplement to prevent the liver damage caused by APAP abuse.

Keywords

References

  1. Biochem Pharmacol. 2018 Apr;150:9-23 [PMID: 29338970]
  2. Biosci Biotechnol Biochem. 2021 Feb 24;85(3):520-527 [PMID: 33624779]
  3. Free Radic Biol Med. 2016 Feb;91:236-46 [PMID: 26721592]
  4. Front Pharmacol. 2021 May 05;12:586010 [PMID: 34025394]
  5. Hepatobiliary Surg Nutr. 2014 Dec;3(6):331-43 [PMID: 25568858]
  6. Molecules. 2018 Aug 14;23(8): [PMID: 30110942]
  7. Food Chem Toxicol. 2008 Aug;46(8):2611-5 [PMID: 18514995]
  8. Pathophysiology. 2015 Mar;22(1):49-55 [PMID: 25547049]
  9. Microbiol Spectr. 2022 Feb 23;10(1):e0159621 [PMID: 35107323]
  10. J Agric Food Chem. 2017 Oct 25;65(42):9226-9236 [PMID: 28965396]
  11. Oxid Med Cell Longev. 2020 May 13;2020:8026838 [PMID: 32454943]
  12. Int Immunopharmacol. 2023 Jul;120:110375 [PMID: 37267857]
  13. Biomed Pharmacother. 2019 Apr;112:108704 [PMID: 30818140]
  14. Gastroenterology. 2019 Jun;156(8):2230-2241.e11 [PMID: 30742832]
  15. Food Sci Nutr. 2019 Nov 28;8(1):237-245 [PMID: 31993149]
  16. Molecules. 2018 Dec 31;24(1): [PMID: 30602693]
  17. Tissue Cell. 2019 Oct;60:1-13 [PMID: 31582012]
  18. Eur J Pharmacol. 2018 May 15;827:173-180 [PMID: 29563064]
  19. Nat Rev Gastroenterol Hepatol. 2011 Feb;8(2):108-18 [PMID: 21293511]
  20. Food Funct. 2018 Jun 20;9(6):3291-3300 [PMID: 29790527]
  21. Evid Based Complement Alternat Med. 2019 Jun 19;2019:6919834 [PMID: 31320915]
  22. Int Immunopharmacol. 2018 Jun;59:21-30 [PMID: 29621733]
  23. Eur J Pharmacol. 2021 Nov 5;910:174447 [PMID: 34461126]
  24. Biomed Pharmacother. 2018 Dec;108:838-844 [PMID: 30372895]
  25. J Biochem Mol Toxicol. 2021 Apr;35(4):e22697 [PMID: 33393705]
  26. Front Physiol. 2019 May 31;10:660 [PMID: 31214044]
  27. Int J Biol Macromol. 2018 May;111:1133-1139 [PMID: 29415408]
  28. Biomater Sci. 2023 Mar 28;11(7):2348-2358 [PMID: 36722889]
  29. Chem Biol Interact. 2016 Feb 25;246:11-9 [PMID: 26772156]
  30. Toxicol Res (Camb). 2018 Oct 25;8(1):67-76 [PMID: 30713662]
  31. J Agric Food Chem. 2017 May 10;65(18):3684-3692 [PMID: 28429935]
  32. Int Immunopharmacol. 2017 Jun;47:126-133 [PMID: 28391159]
  33. Oxid Med Cell Longev. 2013;2013:975839 [PMID: 24285992]
  34. Phytother Res. 2018 Nov;32(11):2235-2246 [PMID: 30039882]
  35. Pharm Biol. 2016 Dec;54(12):2830-2837 [PMID: 27252117]
  36. Food Funct. 2022 Mar 21;13(6):3465-3480 [PMID: 35244654]
  37. Food Funct. 2021 Mar 21;12(6):2468-2480 [PMID: 33650604]
  38. JGH Open. 2019 Oct 24;4(3):332-339 [PMID: 32514433]
  39. Food Chem Toxicol. 2019 Jan;123:349-362 [PMID: 30423402]
  40. Int J Biol Sci. 2019 Jan 29;15(4):788-799 [PMID: 30906210]
  41. Food Chem Toxicol. 2010 Aug-Sep;48(8-9):2200-5 [PMID: 20553784]
  42. Redox Biol. 2018 Jul;17:274-283 [PMID: 29753208]
  43. Food Res Int. 2021 May;143:110264 [PMID: 33992365]
  44. Front Cell Dev Biol. 2022 Feb 10;10:826204 [PMID: 35223849]
  45. Int Immunopharmacol. 2016 May;34:53-59 [PMID: 26921732]
  46. Toxicol Lett. 2018 Jun 15;290:97-109 [PMID: 29574133]
  47. Food Funct. 2020 Aug 1;11(8):7061-7072 [PMID: 32725034]
  48. J Allergy Clin Immunol. 2015 Sep;136(3):769-80 [PMID: 25828268]
  49. Front Pharmacol. 2018 Mar 23;9:147 [PMID: 29628888]
  50. Int J Biol Macromol. 2018 Jul 15;114:137-142 [PMID: 29572139]
  51. Rejuvenation Res. 2010 Dec;13(6):729-35 [PMID: 21204654]
  52. N Engl J Med. 2019 Jul 18;381(3):264-273 [PMID: 31314970]
  53. Clin Sci (Lond). 2010 Mar 30;118(12):691-705 [PMID: 20350292]
  54. J Ethnopharmacol. 2021 May 10;271:113890 [PMID: 33516931]
  55. Arch Toxicol. 2015 Feb;89(2):193-9 [PMID: 25537186]

Grants

  1. U1904165/National Natural Science Foundation of China
  2. 232102310489, 212102310395/Henan Provincial Science and Technology Research Project

Word Cloud

Created with Highcharts 10.0.0ECSliverAPAPdamage<005factorBuchmayabusemechanismsMicemg/kgobviouslycontentinhibitedexpression2proteinskappaBAcetaminophencommonpublichealthproblemcancausesevereHoweverstrategiesdealingsituationsafelyeffectivelylimitedgoalcurrentworkevaluateprotectionpotentialmolecularethanolextractshootswildvegetableshutouAPAP-inducedmiceorallyreceivedsevendays300600bwperdayintraperitoneallyinjected250ResultsexhibiteddecreasedalkalinephosphatasealanineaminotransferaseaspartatetransaminasemalondialdehydeCatalasesuperoxidedismutasenotablyrestoredreducedglutathioneincreasedMoreoversignificantlysecretioninterleukin-1βtumornecrosisfactor-αanalysesshowedalleviateoxidativestressincreasingnuclearerythroid-2-relatedNADHquinoneoxidoreductase1suppressinflammationinhibitingphosphorylated-inhibitoralpha/inhibitoralphaphosphorylated-nuclearκB/nuclearκBcyclooxygenase-2MeanwhilehepatocyteapoptosisenhancingB-celllymphomagenesuppressingBcl-2-associatedXproteinsummaryuseddietarysupplementpreventcausedProtectiveEffectMechanismPhytochemicalExtractWildVegetableShutouAcetaminophen-InducedLiverInjuryCratevaunilocularisreactiveoxygenspecies

Similar Articles

Cited By