Ensemble Improved Permutation Entropy: A New Approach for Time Series Analysis.

Zhe Chen, Xiaodong Ma, Jielin Fu, Yaan Li
Author Information
  1. Zhe Chen: School of Information and Communication, Guilin University of Electronic Technology, Guilin 541004, China.
  2. Xiaodong Ma: School of Information and Communication, Guilin University of Electronic Technology, Guilin 541004, China.
  3. Jielin Fu: School of Information and Communication, Guilin University of Electronic Technology, Guilin 541004, China. ORCID
  4. Yaan Li: School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China. ORCID

Abstract

Entropy quantification approaches have gained considerable attention in engineering applications. However, certain limitations persist, including the strong dependence on parameter selection, limited discriminating power, and low robustness to noise. To alleviate these issues, this paper introduces two novel algorithms for time series analysis: the ensemble improved permutation entropy (EIPE) and multiscale EIPE (MEIPE). Our approaches employ a new symbolization process that considers both permutation relations and amplitude information. Additionally, the ensemble technique is utilized to reduce the dependence on parameter selection. We performed a comprehensive evaluation of the proposed methods using various synthetic and experimental signals. The results illustrate that EIPE is capable of distinguishing white, pink, and brown noise with a smaller number of samples compared to traditional entropy algorithms. Furthermore, EIPE displays the potential to discriminate between regular and non-regular dynamics. Notably, when compared to permutation entropy, weighted permutation entropy, and dispersion entropy, EIPE exhibits superior robustness against noise. In practical applications, such as RR interval data classification, bearing fault diagnosis, marine vessel identification, and electroencephalographic (EEG) signal classification, the proposed methods demonstrate better discriminating power compared to conventional entropy measures. These promising findings validate the effectiveness and potential of the algorithms proposed in this paper.

Keywords

References

  1. Entropy (Basel). 2019 May 18;21(5): [PMID: 33267221]
  2. Am J Physiol. 1996 Oct;271(4 Pt 2):R1078-84 [PMID: 8898003]
  3. Chaos. 2014 Sep;24(3):033116 [PMID: 25273196]
  4. Phys Rev Lett. 2002 Apr 29;88(17):174102 [PMID: 12005759]
  5. Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Feb;85(2 Pt 1):021906 [PMID: 22463243]
  6. Entropy (Basel). 2019 Mar 01;21(3): [PMID: 33266950]
  7. Healthc Technol Lett. 2015 May 21;2(3):70-3 [PMID: 26609408]
  8. Entropy (Basel). 2019 Aug 14;21(8): [PMID: 33267506]
  9. Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Feb;87(2):022911 [PMID: 23496595]
  10. Sensors (Basel). 2018 Jun 14;18(6): [PMID: 29899216]
  11. Comput Methods Programs Biomed. 2016 May;128:40-51 [PMID: 27040830]
  12. IEEE Trans Neural Syst Rehabil Eng. 2007 Jun;15(2):266-72 [PMID: 17601197]
  13. Am J Physiol Heart Circ Physiol. 2000 Jun;278(6):H2039-49 [PMID: 10843903]
  14. Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Feb;71(2 Pt 1):021906 [PMID: 15783351]
  15. Entropy (Basel). 2018 Mar 20;20(3): [PMID: 33265301]
  16. Entropy (Basel). 2018 Jun 01;20(6): [PMID: 33265515]
  17. Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2297-301 [PMID: 11607165]
  18. J Acoust Soc Am. 2002 Jul;112(1):172-7 [PMID: 12141342]
  19. Med Biol Eng Comput. 2015 Jan;53(1):77-87 [PMID: 25351477]

Grants

  1. AD21220098/the Special Program of Guangxi Science and Technology Base and Talent
  2. 2021/2021 Open Fund project of the Key Laboratory of Cognitive Radio and Information Processing of the Ministry of Education

Word Cloud

Created with Highcharts 10.0.0entropypermutationEIPEnoisealgorithmsensembleproposedcomparedapproachesapplicationsdependenceparameterselectiondiscriminatingpowerrobustnesspaperimprovedmethodspotentialdataclassificationEntropyquantificationgainedconsiderableattentionengineeringHowevercertainlimitationspersistincludingstronglimitedlowalleviateissuesintroducestwonoveltimeseriesanalysis:multiscaleMEIPEemploynewsymbolizationprocessconsidersrelationsamplitudeinformationAdditionallytechniqueutilizedreduceperformedcomprehensiveevaluationusingvarioussyntheticexperimentalsignalsresultsillustratecapabledistinguishingwhitepinkbrownsmallernumbersamplestraditionalFurthermoredisplaysdiscriminateregularnon-regulardynamicsNotablyweighteddispersionexhibitssuperiorpracticalRRintervalbearingfaultdiagnosismarinevesselidentificationelectroencephalographicEEGsignaldemonstratebetterconventionalmeasurespromisingfindingsvalidateeffectivenessEnsembleImprovedPermutationEntropy:NewApproachTimeSeriesAnalysisanalysisfeatureextraction

Similar Articles

Cited By