Life's Mechanism.

Simon Pierce
Author Information
  1. Simon Pierce: Department of Agricultural and Environmental Sciences (DiSAA), University of Milan, Via Celoria 2, 20133 Milano, Italy. ORCID

Abstract

The multifarious internal workings of organisms are difficult to reconcile with a single feature defining a state of 'being alive'. Indeed, definitions of life rely on emergent properties (growth, capacity to evolve, agency) only symptomatic of intrinsic functioning. Empirical studies demonstrate that biomolecules including ratcheting or rotating enzymes and ribozymes undergo repetitive conformation state changes driven either directly or indirectly by thermodynamic gradients. They exhibit disparate structures, but govern processes relying on directional physical motion (DNA transcription, translation, cytoskeleton transport) and share the principle of repetitive uniplanar conformation changes driven by thermodynamic gradients, producing dependable unidirectional motion: 'heat engines' exploiting thermodynamic disequilibria to perform work. Recognition that disparate biological molecules demonstrate conformation state changes involving directional motion, working in self-regulating networks, allows a mechanistic definition: life is a self-regulating process whereby matter undergoes cyclic, uniplanar conformation state changes that convert thermodynamic disequilibria into directed motion, performing work that locally reduces entropy. 'Living things' are structures including an autonomous network of units exploiting thermodynamic gradients to drive uniplanar conformation state changes that perform work. These principles are independent of any specific chemical environment, and can be applied to other biospheres.

Keywords

References

  1. BMC Biol. 2017 May 2;15(1):34 [PMID: 28464931]
  2. PLoS Biol. 2015 Aug 18;13(8):e1002224 [PMID: 26284513]
  3. Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Jan;65(1 Pt 1):011110 [PMID: 11800680]
  4. Trends Cogn Sci. 2003 Nov;7(11):505-12 [PMID: 14585448]
  5. Angew Chem Int Ed Engl. 1998 Sep 18;37(17):2308-2319 [PMID: 29710950]
  6. Nat Rev Microbiol. 2007 Nov;5(11):892-9 [PMID: 17938630]
  7. Acc Chem Res. 2018 Oct 16;51(10):2373-2381 [PMID: 30256612]
  8. Biochim Biophys Acta. 2013 Feb;1827(2):62-78 [PMID: 23063910]
  9. Philos Trans R Soc Lond B Biol Sci. 2000 Apr 29;355(1396):511-22 [PMID: 10836504]
  10. Biophys J. 2010 Jun 2;98(11):2401-9 [PMID: 20513383]
  11. Am J Physiol. 1999 Apr;276(4):R990-6 [PMID: 10198376]
  12. Curr Opin Struct Biol. 2010 Apr;20(2):142-7 [PMID: 20060708]
  13. Annu Rev Biochem. 1997;66:1-18 [PMID: 9242900]
  14. Methods Enzymol. 1989;171:145-64 [PMID: 2531833]
  15. Catalysts. 2016 Jun;6(6): [PMID: 28367322]
  16. Nature. 2010 Nov 4;468(7320):72-6 [PMID: 20935627]
  17. Artif Life. 2001 Summer;7(3):225-75 [PMID: 11712956]
  18. Genome Res. 2003 Mar;13(3):407-12 [PMID: 12618371]
  19. Stud Hist Philos Biol Biomed Sci. 2007 Dec;38(4):807-19 [PMID: 18053935]
  20. Biochim Biophys Acta. 2000 May 31;1458(2-3):482-510 [PMID: 10838060]
  21. Front Zool. 2013 Jun 08;10(1):33 [PMID: 23758841]
  22. Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Oct;86(4 Pt 1):041106 [PMID: 23214528]
  23. Proc Natl Acad Sci U S A. 2016 Aug 30;113(35):9786-91 [PMID: 27528667]
  24. Biophys J. 2018 May 8;114(9):2174-2179 [PMID: 29742410]
  25. Science. 2001 May 18;292(5520):1319-25 [PMID: 11358999]
  26. Biochem Soc Trans. 2011 Apr;39(2):641-6 [PMID: 21428954]
  27. Mol Phylogenet Evol. 2014 Feb;71:55-78 [PMID: 24513576]
  28. Res Microbiol. 2009 Sep;160(7):457-65 [PMID: 19539027]
  29. Nucleic Acids Res. 2018 Aug 21;46(14):7354-7365 [PMID: 29762712]
  30. Cryobiology. 2016 Feb;72(1):78-81 [PMID: 26724522]
  31. Sci Rep. 2019 Dec 17;9(1):19305 [PMID: 31848406]
  32. Semin Cell Dev Biol. 2010 May;21(3):260-8 [PMID: 20109570]
  33. Nature. 2010 Dec 2;468(7324):713-6 [PMID: 21124459]
  34. Cell. 2012 Dec 21;151(7):1406-16 [PMID: 23260134]
  35. Science. 2011 Aug 5;333(6043):755-8 [PMID: 21817054]
  36. Nature. 1953 Apr 25;171(4356):737-8 [PMID: 13054692]
  37. Biophys J. 2017 Mar 14;112(5):911-920 [PMID: 28297650]
  38. Entropy (Basel). 2020 Nov 16;22(11): [PMID: 33287069]
  39. Bioessays. 2019 Jun;41(6):e1900076 [PMID: 31132172]
  40. J Am Chem Soc. 2016 Mar 9;138(9):3058-65 [PMID: 26859432]
  41. Cold Spring Harb Symp Quant Biol. 2009;74:17-23 [PMID: 19667013]
  42. Biochim Biophys Acta. 2006 Sep-Oct;1757(9-10):1162-70 [PMID: 16730323]
  43. Bioessays. 2010 Apr;32(4):271-80 [PMID: 20108228]
  44. Nature. 2006 Apr 6;440(7085):757-63 [PMID: 16598249]
  45. PLoS One. 2012;7(7):e40042 [PMID: 22815722]
  46. Comp Biochem Physiol B Biochem Mol Biol. 2001 Apr;128(4):613-24 [PMID: 11290443]
  47. Biochem Soc Trans. 2002 Nov;30(Pt 6):1145-9 [PMID: 12440992]

Word Cloud

Created with Highcharts 10.0.0stateconformationchangesthermodynamiclifegradientsmotionuniplanarworkdemonstrateincludingrepetitivedrivendisparatestructuresdirectionalexploitingdisequilibriaperformself-regulatingmultifariousinternalworkingsorganismsdifficultreconcilesinglefeaturedefining'beingalive'IndeeddefinitionsrelyemergentpropertiesgrowthcapacityevolveagencysymptomaticintrinsicfunctioningEmpiricalstudiesbiomoleculesratchetingrotatingenzymesribozymesundergoeitherdirectlyindirectlyexhibitgovernprocessesrelyingphysicalDNAtranscriptiontranslationcytoskeletontransportshareprincipleproducingdependableunidirectionalmotion:'heatengines'Recognitionbiologicalmoleculesinvolvingworkingnetworksallowsmechanisticdefinition:processwherebymatterundergoescyclicconvertdirectedperforminglocallyreducesentropy'Livingthings'autonomousnetworkunitsdriveprinciplesindependentspecificchemicalenvironmentcanappliedbiospheresLife'sMechanismbrownianmotordeathdefinitionfeynman���smoluchowskiratchetheatenginetheory

Similar Articles

Cited By