Multilayered Functional Triboelectric Polymers for Self-Powered Wearable Applications: A Review.

Minsoo P Kim
Author Information
  1. Minsoo P Kim: Department of Chemical Engineering, Sunchon National University, Suncheon 57922, Republic of Korea.

Abstract

Multifunctional wearable devices detect electric signals responsive to various biological stimuli and monitor present body motions or conditions, necessitating flexible materials with high sensitivity and sustainable operation. Although various dielectric polymers have been utilized in self-powered wearable applications in response to multiple external stimuli, their intrinsic limitations hinder further device performance enhancement. Because triboelectric devices comprising dielectric polymers are based on triboelectrification and electrostatic induction, multilayer-stacking structures of dielectric polymers enable significant improvements in device performance owing to enhanced interfacial polarization through dissimilar permittivity and conductivity between each layer, resulting in self-powered high-performance wearable devices. Moreover, novel triboelectric polymers with unique chemical structures or nano-additives can control interfacial polarization, allowing wearable devices to respond to multiple external stimuli. This review summarizes the recent insights into multilayered functional triboelectric polymers, including their fundamental dielectric principles and diverse applications.

Keywords

References

  1. ACS Appl Mater Interfaces. 2016 Jan 13;8(1):736-44 [PMID: 26654103]
  2. ACS Nano. 2018 Jun 26;12(6):6147-6155 [PMID: 29851468]
  3. ACS Nano. 2015 Apr 28;9(4):4621-7 [PMID: 25844938]
  4. ACS Nano. 2020 Jul 28;14(7):8915-8930 [PMID: 32574036]
  5. Nano Lett. 2012 Dec 12;12(12):6339-46 [PMID: 23130843]
  6. Nat Rev Mater. 2022;7(11):887-907 [PMID: 35910814]
  7. Natl Sci Rev. 2022 Aug 29;10(1):nwac170 [PMID: 36684511]
  8. Sci Adv. 2017 Jul 28;3(7):e1700694 [PMID: 28782029]
  9. Nanomicro Lett. 2021 Sep 20;13(1):199 [PMID: 34542731]
  10. Nat Mater. 2011 May 01;10(7):532-8 [PMID: 21532584]
  11. Sci Adv. 2021 Feb 10;7(7): [PMID: 33568483]
  12. Sensors (Basel). 2021 Jun 02;21(11): [PMID: 34199446]
  13. Nat Commun. 2019 Mar 29;10(1):1427 [PMID: 30926850]
  14. Sensors (Basel). 2021 Aug 19;21(16): [PMID: 34451032]
  15. ACS Nano. 2023 Jun 27;17(12):11087-11219 [PMID: 37219021]
  16. iScience. 2021 Jan 05;24(1):102027 [PMID: 33521595]
  17. Micromachines (Basel). 2021 Mar 25;12(4): [PMID: 33806024]
  18. Sensors (Basel). 2017 Jun 23;17(7): [PMID: 28644398]
  19. Micromachines (Basel). 2023 Mar 01;14(3): [PMID: 36984999]
  20. Nanoscale Res Lett. 2021 Feb 12;16(1):35 [PMID: 33580327]
  21. Adv Mater. 2022 Aug;34(33):e2200724 [PMID: 35445458]
  22. Nanomaterials (Basel). 2019 May 29;9(6): [PMID: 31146479]
  23. Adv Mater. 2018 Apr;30(15):e1706790 [PMID: 29508454]
  24. Angew Chem Int Ed Engl. 2008;47(12):2188-207 [PMID: 18270989]
  25. ACS Nano. 2020 Jun 23;14(6):7101-7110 [PMID: 32501001]
  26. ACS Nano. 2017 Jun 27;11(6):6131-6138 [PMID: 28558185]
  27. ACS Appl Mater Interfaces. 2016 Jul 20;8(28):18519-25 [PMID: 27337938]
  28. Adv Sci (Weinh). 2021 Dec;8(23):e2102221 [PMID: 34519436]
  29. Nano Lett. 2012 Jun 13;12(6):3109-14 [PMID: 22577731]
  30. Sensors (Basel). 2019 Jun 14;19(12): [PMID: 31207949]
  31. Science. 2008 Sep 12;321(5895):1457-61 [PMID: 18787160]
  32. J Phys Chem Lett. 2014 Nov 6;5(21):3677-87 [PMID: 26278736]
  33. Front Chem. 2020 Nov 20;8:577327 [PMID: 33330365]
  34. Nanoscale. 2017 Jul 13;9(27):9668-9675 [PMID: 28675240]
  35. ACS Nano. 2021 Jan 26;15(1):258-287 [PMID: 33427457]
  36. ACS Nano. 2020 Sep 22;14(9):11442-11451 [PMID: 32840992]
  37. ACS Appl Mater Interfaces. 2022 Apr 20;14(15):17806-17817 [PMID: 35385641]
  38. J R Soc Med. 2016 Oct;109(10):372-380 [PMID: 27729595]
  39. Nat Commun. 2018 Sep 14;9(1):3773 [PMID: 30218082]
  40. Adv Sci (Weinh). 2020 Jun 02;7(14):2000186 [PMID: 32714748]
  41. Nat Nanotechnol. 2019 Feb;14(2):151-155 [PMID: 30598524]
  42. Science. 2011 Jul 15;333(6040):308-12 [PMID: 21700838]
  43. Polymers (Basel). 2020 Nov 04;12(11): [PMID: 33158271]

Word Cloud

Created with Highcharts 10.0.0wearablepolymersdevicesdielectrictriboelectricstimuliapplicationsdeviceinterfacialpolarizationvariousself-poweredmultipleexternalperformancestructuresmultilayeredMultifunctionaldetectelectricsignalsresponsivebiologicalmonitorpresentbodymotionsconditionsnecessitatingflexiblematerialshighsensitivitysustainableoperationAlthoughutilizedresponseintrinsiclimitationshinderenhancementcomprisingbasedtriboelectrificationelectrostaticinductionmultilayer-stackingenablesignificantimprovementsowingenhanceddissimilarpermittivityconductivitylayerresultinghigh-performanceMoreovernoveluniquechemicalnano-additivescancontrolallowingrespondreviewsummarizesrecentinsightsfunctionalincludingfundamentalprinciplesdiverseMultilayeredFunctionalTriboelectricPolymersSelf-PoweredWearableApplications:Reviewmulti-functionalitypolymerself-power

Similar Articles

Cited By