Development of Blueberry-Derived Extracellular Nanovesicles for Immunomodulatory Therapy.

Tuong Ngoc-Gia Nguyen, Cuong Viet Pham, Rocky Chowdhury, Shweta Patel, Satendra Kumar Jaysawal, Yingchun Hou, Huo Xu, Lee Jia, Andrew Duan, Phuong Ha-Lien Tran, Wei Duan
Author Information
  1. Tuong Ngoc-Gia Nguyen: School of Medicine, Faculty of Health, Deakin University, Geelong Waurn Ponds Campus, Geelong, VIC 3216, Australia. ORCID
  2. Cuong Viet Pham: School of Medicine, Faculty of Health, Deakin University, Geelong Waurn Ponds Campus, Geelong, VIC 3216, Australia. ORCID
  3. Rocky Chowdhury: School of Medicine, Faculty of Health, Deakin University, Geelong Waurn Ponds Campus, Geelong, VIC 3216, Australia. ORCID
  4. Shweta Patel: School of Medicine, Faculty of Health, Deakin University, Geelong Waurn Ponds Campus, Geelong, VIC 3216, Australia.
  5. Satendra Kumar Jaysawal: School of Medicine, Faculty of Health, Deakin University, Geelong Waurn Ponds Campus, Geelong, VIC 3216, Australia.
  6. Yingchun Hou: Laboratory of Tumor Molecular and Cellular Biology, College of Life Sciences, Shaanxi Normal University, 620 West Chang'an Avenue, Xi'an 710119, China.
  7. Huo Xu: College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China.
  8. Lee Jia: College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China.
  9. Andrew Duan: School of Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3800, Australia.
  10. Phuong Ha-Lien Tran: School of Medicine, Faculty of Health, Deakin University, Geelong Waurn Ponds Campus, Geelong, VIC 3216, Australia.
  11. Wei Duan: School of Medicine, Faculty of Health, Deakin University, Geelong Waurn Ponds Campus, Geelong, VIC 3216, Australia.

Abstract

Over the past decade, there has been a significant expansion in the development of plant-derived extracellular nanovesicles (EVs) as an effective drug delivery system for precision therapy. However, the lack of effective methods for the isolation and characterization of plant EVs hampers progress in the field. To solve a challenge related to systemic separation and characterization in the plant-derived EV field, herein, we report the development of a simple 3D inner filter-based method that allows the extraction of apoplastic fluid (AF) from blueberry, facilitating EV isolation as well as effective downstream applications. Class I chitinase (PR-3) was found in blueberry-derived EVs (BENVs). As Class I chitinase is expressed in a wide range of plants, it could serve as a universal marker for plant-derived EVs. Significantly, the BENVs exhibit not only higher drug loading capacity than that reported for other EVs but also possess the ability to modulate the release of the proinflammatory cytokine IL-8 and total glutathione in response to oxidative stress. Therefore, the BENV is a promising edible multifunctional nano-bio-platform for future immunomodulatory therapies.

Keywords

References

  1. PLoS One. 2011 Feb 10;6(2):e16723 [PMID: 21347307]
  2. Plant Sci. 2014 Jun;223:49-58 [PMID: 24767115]
  3. Front Plant Sci. 2016 Mar 18;7:323 [PMID: 27047507]
  4. Plant Cell. 1990 Jul;2(7):673-84 [PMID: 2152343]
  5. Curr Biol. 2021 May 24;31(10):R603-R618 [PMID: 34033793]
  6. Molecules. 2012 May 18;17(5):5972-87 [PMID: 22609787]
  7. J Am Chem Soc. 2009 Apr 1;131(12):4490-8 [PMID: 19256547]
  8. Int J Mol Sci. 2014 Jun 18;15(6):11030-9 [PMID: 24945312]
  9. AAPS J. 2017 Nov;19(6):1691-1702 [PMID: 29047044]
  10. Pharmaceutics. 2018 Nov 06;10(4): [PMID: 30404188]
  11. Front Plant Sci. 2015 Jun 02;6:352 [PMID: 26082784]
  12. Cancer Res. 2015 Jun 15;75(12):2520-9 [PMID: 25883092]
  13. J Cell Biochem. 2010 Oct 1;111(2):488-96 [PMID: 20533300]
  14. Plant Physiol. 2017 Jan;173(1):728-741 [PMID: 27837092]
  15. J Agric Food Chem. 2006 Jul 26;54(15):5651-8 [PMID: 16848559]
  16. Physiol Rev. 2014 Apr;94(2):329-54 [PMID: 24692350]
  17. Food Sci Technol Int. 2015 Oct;21(7):537-46 [PMID: 25280937]
  18. Front Oncol. 2021 Jun 03;11:688919 [PMID: 34150657]
  19. Cell Mol Biol Lett. 2003;8(3):809-24 [PMID: 12949620]
  20. J Chem Inf Model. 2019 Oct 28;59(10):4413-4426 [PMID: 31545601]
  21. J Immunol Methods. 2008 Jun 1;335(1-2):98-105 [PMID: 18423480]
  22. Physiol Plant. 2001 Apr;111(4):457-465 [PMID: 11299010]
  23. Mol Plant. 2014 Mar;7(3):573-7 [PMID: 24177685]
  24. Anal Chem. 2013 Apr 16;85(8):4141-9 [PMID: 23480100]
  25. Plant Physiol. 1971 Mar;47(3):361-5 [PMID: 16657623]
  26. Biotechnol Lett. 2012 Nov;34(11):1983-90 [PMID: 22850791]
  27. Biochim Biophys Acta Biomembr. 2017 Mar;1859(3):459-466 [PMID: 27989744]
  28. Sci Rep. 2018 Oct 2;8(1):14644 [PMID: 30279553]
  29. Protoplasma. 2020 Jan;257(1):3-12 [PMID: 31468195]
  30. Plant Physiol. 1990 Jul;93(3):1147-53 [PMID: 16667571]
  31. Front Pharmacol. 2020 Apr 28;11:524 [PMID: 32425781]
  32. Adv Biomed Res. 2018 Aug 31;7:125 [PMID: 30211138]
  33. J Exp Bot. 2017 Nov 28;68(20):5411-5414 [PMID: 29190393]
  34. Planta. 2002 Apr;214(6):895-901 [PMID: 11941466]
  35. Plant Physiol. 1990 Nov;94(3):1040-7 [PMID: 16667794]
  36. Int J Pharm. 2015 Apr 30;484(1-2):228-34 [PMID: 25735669]
  37. Mol Cell Proteomics. 2009 Jan;8(1):145-56 [PMID: 18716313]
  38. Int J Mol Sci. 2021 Oct 25;22(21): [PMID: 34768930]
  39. Mol Pharm. 2019 Jun 3;16(6):2690-2699 [PMID: 31038962]
  40. Plant Physiol. 2001 Jul;126(3):1299-313 [PMID: 11457981]
  41. PeerJ. 2018 Jul 31;6:e5186 [PMID: 30083436]
  42. Int J Mol Sci. 2014 May 05;15(5):7611-23 [PMID: 24802873]
  43. Nat Biotechnol. 2011 Apr;29(4):325-6 [PMID: 21478846]
  44. Mol Ther. 2013 Jul;21(7):1345-57 [PMID: 23752315]
  45. Anat Rec (Hoboken). 2014 Dec;297(12):2280-8 [PMID: 25044297]
  46. J Extracell Vesicles. 2021 Apr;10(6):e12048 [PMID: 33936567]
  47. Tsitol Genet. 2014 Mar-Apr;48(2):71-82 [PMID: 24818513]
  48. Planta. 2008 May;227(6):1351-61 [PMID: 18317799]
  49. FEBS Lett. 2009 Oct 20;583(20):3363-6 [PMID: 19796642]
  50. J Nat Prod. 2007 Dec;70(12):1884-8 [PMID: 18076140]
  51. Mol Ther. 2010 Sep;18(9):1606-14 [PMID: 20571541]
  52. Toxicol Sci. 2006 Jun;91(2):476-83 [PMID: 16537656]
  53. Elife. 2014 Apr 08;3:e02131 [PMID: 24714496]
  54. Plant Signal Behav. 2012 May;7(5):544-6 [PMID: 22516827]
  55. Adv Nutr. 2020 Mar 1;11(2):224-236 [PMID: 31329250]
  56. Lancet. 1984 Jun 16;1(8390):1328-30 [PMID: 6145029]
  57. Am J Clin Nutr. 2019 Jun 1;109(6):1535-1545 [PMID: 31136659]
  58. Int J Nanomedicine. 2007;2(4):751-60 [PMID: 18203441]
  59. Mol Nutr Food Res. 2008 Jun;52 Suppl 1:S103-27 [PMID: 18496811]
  60. Sci Rep. 2017 Jul 5;7(1):4711 [PMID: 28680152]
  61. J Exp Bot. 2017 Nov 28;68(20):5485-5495 [PMID: 29145622]
  62. J Exp Bot. 2017 Dec 18;69(1):59-68 [PMID: 29036447]
  63. Front Plant Sci. 2014 Jun 03;5:249 [PMID: 24917874]
  64. Data Brief. 2018 Dec 13;22:251-254 [PMID: 30591944]
  65. Plant Signal Behav. 2020 Sep 1;15(9):1791519 [PMID: 32657215]
  66. Plant Physiol. 1997 Jul;114(3):771-8 [PMID: 9232868]
  67. Plant Methods. 2011 Dec 22;7:48 [PMID: 22192489]
  68. Appl Biochem Biotechnol. 2017 Nov;183(3):993-1007 [PMID: 28466459]
  69. Mol Cancer Ther. 2004 Sep;3(9):1101-8 [PMID: 15367704]
  70. Nat Nanotechnol. 2021 Mar;16(3):266-276 [PMID: 33712737]
  71. Curr Opin Plant Biol. 2018 Aug;44:16-22 [PMID: 29452903]
  72. J Neuroimmune Pharmacol. 2020 Sep;15(3):487-500 [PMID: 31722094]
  73. Cancer Res. 2018 Feb 1;78(3):798-808 [PMID: 29217761]
  74. J Phys Chem B. 2018 Mar 1;122(8):2341-2354 [PMID: 29394060]
  75. J Plant Physiol. 2018 Oct;229:111-121 [PMID: 30056374]
  76. Nat Cell Biol. 2019 Jan;21(1):9-17 [PMID: 30602770]
  77. Dev Cell. 2006 Mar;10(3):343-54 [PMID: 16516837]
  78. J Proteome Res. 2009 Jan;8(1):82-93 [PMID: 18998720]
  79. J Dairy Sci. 2016 Mar;99(3):1780-1790 [PMID: 26774724]
  80. J Agric Food Chem. 2008 Jan 9;56(1):190-6 [PMID: 18072741]
  81. Int J Nanomedicine. 2018 Aug 20;13:4727-4745 [PMID: 30154657]
  82. Materials (Basel). 2017 May 09;10(5): [PMID: 28772877]
  83. Plant Physiol Biochem. 2011 Jun;49(6):617-22 [PMID: 21420309]
  84. Nanoscale. 2019 May 28;11(20):10106-10113 [PMID: 31089660]
  85. Front Pharmacol. 2021 Feb 19;12:618411 [PMID: 33679401]
  86. Oncotarget. 2015 Aug 14;6(23):19514-27 [PMID: 26098775]
  87. Cancer Lett. 2016 Feb 1;371(1):48-61 [PMID: 26604130]
  88. J Proteomics. 2013 Jan 14;78:58-71 [PMID: 23159799]
  89. Plant Physiol. 2019 Jul;180(3):1375-1388 [PMID: 31019004]
  90. J Agric Food Chem. 2009 Oct 14;57(19):8893-900 [PMID: 19769368]
  91. J Immunol. 2011 Aug 15;187(4):1591-600 [PMID: 21734072]
  92. Biochim Biophys Acta. 1995 Sep 19;1263(3):212-20 [PMID: 7548207]
  93. Mol Ther. 2021 Jan 6;29(1):13-31 [PMID: 33278566]
  94. Int J Pharm. 2019 Jul 20;566:697-707 [PMID: 31207280]
  95. Mol Ther. 2014 Mar;22(3):522-534 [PMID: 23939022]
  96. Nat Protoc. 2007;2(9):2111-9 [PMID: 17853866]

Word Cloud

Created with Highcharts 10.0.0EVsplant-derivedeffectivedrugEVchitinasedevelopmentdeliveryisolationcharacterizationplantfieldClassBENVsimmunomodulatorypastdecadesignificantexpansionextracellularnanovesiclessystemprecisiontherapyHoweverlackmethodshampersprogresssolvechallengerelatedsystemicseparationhereinreportsimple3Dinnerfilter-basedmethodallowsextractionapoplasticfluidAFblueberryfacilitatingwelldownstreamapplicationsPR-3foundblueberry-derivedexpressedwiderangeplantsserveuniversalmarkerSignificantlyexhibithigherloadingcapacityreportedalsopossessabilitymodulatereleaseproinflammatorycytokineIL-8totalglutathioneresponseoxidativestressThereforeBENVpromisingediblemultifunctionalnano-bio-platformfuturetherapiesDevelopmentBlueberry-DerivedExtracellularNanovesiclesImmunomodulatoryTherapybiomarkerclasspathogen-relatedproteins

Similar Articles

Cited By