Coordinated single-cell tumor microenvironment dynamics reinforce pancreatic cancer subtype.

Ki Oh, Yun Jae Yoo, Luke A Torre-Healy, Manisha Rao, Danielle Fassler, Pei Wang, Michael Caponegro, Mei Gao, Joseph Kim, Aaron Sasson, Georgios Georgakis, Scott Powers, Richard A Moffitt
Author Information
  1. Ki Oh: Department of Biomedical Informatics, Stony Brook University, Stony Brook, NY, USA.
  2. Yun Jae Yoo: Department of Biomedical Informatics, Stony Brook University, Stony Brook, NY, USA. ORCID
  3. Luke A Torre-Healy: Department of Biomedical Informatics, Stony Brook University, Stony Brook, NY, USA. ORCID
  4. Manisha Rao: Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA.
  5. Danielle Fassler: Department of Biomedical Informatics, Stony Brook University, Stony Brook, NY, USA.
  6. Pei Wang: Department of Cell Systems & Anatomy, University of Texas Health Science Center, San Antonio, TX, USA.
  7. Michael Caponegro: Department of Pharmacology, Stony Brook University, Stony Brook, NY, USA.
  8. Mei Gao: Department of Surgery, University of Kentucky and Markey Cancer Center, Lexington, KY, USA.
  9. Joseph Kim: Department of Surgery, University of Kentucky and Markey Cancer Center, Lexington, KY, USA.
  10. Aaron Sasson: Department of Surgery, Stony Brook University, Stony Brook, NY, USA.
  11. Georgios Georgakis: Department of Surgery, Stony Brook University, Stony Brook, NY, USA.
  12. Scott Powers: Department of Pathology, Stony Brook University, Stony Brook, NY, USA.
  13. Richard A Moffitt: Department of Biomedical Informatics, Stony Brook University, Stony Brook, NY, USA. richard.austin.moffitt@emory.edu. ORCID

Abstract

Bulk analyses of pancreatic ductal adenocarcinoma (PDAC) samples are complicated by the tumor microenvironment (TME), i.e. signals from fibroblasts, endocrine, exocrine, and immune cells. Despite this, we and others have established tumor and stroma subtypes with prognostic significance. However, understanding of underlying signals driving distinct immune and stromal landscapes is still incomplete. Here we integrate 92 single cell RNA-seq samples from seven independent studies to build a reproducible PDAC atlas with a focus on tumor-TME interdependence. Patients with activated stroma are synonymous with higher myofibroblastic and immunogenic fibroblasts, and furthermore show increased M2-like macrophages and regulatory T-cells. Contrastingly, patients with 'normal' stroma show M1-like recruitment, elevated effector and exhausted T-cells. To aid interoperability of future studies, we provide a pretrained cell type classifier and an atlas of subtype-based signaling factors that we also validate in mouse data. Ultimately, this work leverages the heterogeneity among single-cell studies to create a comprehensive view of the orchestra of signaling interactions governing PDAC.

References

  1. Cancer Res. 2023 Feb 3;83(3):441-455 [PMID: 36459568]
  2. Int J Mol Sci. 2018 Jun 21;19(7): [PMID: 29933628]
  3. J Leukoc Biol. 2020 Jun;107(6):917-932 [PMID: 32272497]
  4. Nat Genet. 2015 Oct;47(10):1168-78 [PMID: 26343385]
  5. Cancer Cell. 2020 Oct 12;38(4):567-583.e11 [PMID: 32976774]
  6. Cell. 2021 Oct 28;184(22):5577-5592.e18 [PMID: 34644529]
  7. Cell Rep. 2021 Oct 19;37(3):109844 [PMID: 34686340]
  8. Front Oncol. 2021 Apr 15;11:591386 [PMID: 33937018]
  9. Cold Spring Harb Mol Case Stud. 2020 Apr 1;6(2): [PMID: 32054662]
  10. Cancer Cell. 2011 Apr 12;19(4):441-55 [PMID: 21481787]
  11. J Immunol. 2020 Sep 1;205(5):1461-1472 [PMID: 32839214]
  12. JCI Insight. 2019 Jul 23;5: [PMID: 31335328]
  13. BMC Biol. 2017 May 19;15(1):45 [PMID: 28526034]
  14. Cancer Discov. 2019 Feb;9(2):282-301 [PMID: 30366930]
  15. Gut. 2019 Mar;68(3):487-498 [PMID: 29363536]
  16. Nature. 2018 Jul;559(7714):356-362 [PMID: 29973725]
  17. Cell Syst. 2016 Oct 26;3(4):346-360.e4 [PMID: 27667365]
  18. Cell. 2018 Aug 23;174(5):1293-1308.e36 [PMID: 29961579]
  19. Glia. 2021 Jul;69(7):1767-1781 [PMID: 33704822]
  20. Biomedicines. 2022 Feb 24;10(3): [PMID: 35327338]
  21. J Exp Med. 2017 Mar 6;214(3):579-596 [PMID: 28232471]
  22. Cell Syst. 2019 Aug 28;9(2):207-213.e2 [PMID: 31377170]
  23. J Biol Chem. 2007 Mar 2;282(9):6001-11 [PMID: 17200110]
  24. Cells. 2021 Apr 08;10(4): [PMID: 33918004]
  25. Front Cell Dev Biol. 2020 May 07;8:287 [PMID: 32457900]
  26. Cell. 2019 Oct 31;179(4):829-845.e20 [PMID: 31675496]
  27. Nat Commun. 2023 Aug 26;14(1):5226 [PMID: 37633924]
  28. CA Cancer J Clin. 2020 Jan;70(1):7-30 [PMID: 31912902]
  29. Cancer Discov. 2019 Aug;9(8):1102-1123 [PMID: 31197017]
  30. Nat Methods. 2019 Dec;16(12):1289-1296 [PMID: 31740819]
  31. Oncogene. 2008 Oct 6;27(45):5904-12 [PMID: 18836471]
  32. Clin Cancer Res. 2020 Jan 1;26(1):82-92 [PMID: 31754050]
  33. Cell Death Dis. 2020 Jul 27;11(7):589 [PMID: 32719347]
  34. Cell Discov. 2021 May 25;7(1):36 [PMID: 34035226]
  35. Cell. 2015 Jan 15;160(1-2):324-38 [PMID: 25557080]
  36. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2018 Sep;30(9):836-841 [PMID: 30309408]
  37. Genome Biol. 2019 Mar 27;20(1):65 [PMID: 30917859]
  38. Cancer Res. 2005 Mar 1;65(5):1619-26 [PMID: 15753353]
  39. Nat Commun. 2021 Feb 17;12(1):1088 [PMID: 33597522]
  40. J Leukoc Biol. 2021 May;109(5):969-989 [PMID: 33104270]
  41. Oncotarget. 2018 Feb 13;9(19):14764-14790 [PMID: 29599906]
  42. Blood. 2012 Oct 4;120(14):2925-9 [PMID: 22791286]
  43. Clin Cancer Res. 2018 Mar 15;24(6):1344-1354 [PMID: 29288237]
  44. Bioinformatics. 2021 Aug 25;37(16):2485-2487 [PMID: 33459785]
  45. Nat Commun. 2017 Oct 24;8(1):1130 [PMID: 29066712]
  46. Cancer Lett. 2022 Oct 1;545:215834 [PMID: 35917973]
  47. Cancer Discov. 2018 Sep;8(9):1112-1129 [PMID: 29853643]
  48. Nat Cancer. 2020 Jan;1(1):59-74 [PMID: 35118421]
  49. Am Soc Clin Oncol Educ Book. 2016;35:e205-15 [PMID: 27249725]
  50. Signal Transduct Target Ther. 2021 Feb 23;6(1):75 [PMID: 33619259]
  51. Proc Natl Acad Sci U S A. 2020 May 19;117(20):10876-10887 [PMID: 32354994]
  52. Cell Commun Signal. 2017 Jan 5;15(1):1 [PMID: 28073373]
  53. J Atheroscler Thromb. 2004;11(1):15-21 [PMID: 15067194]
  54. Cell. 2020 Apr 16;181(2):442-459.e29 [PMID: 32302573]
  55. Cancer Res. 2018 Aug 1;78(15):4253-4269 [PMID: 29789416]
  56. Nat Immunol. 2019 Apr;20(4):420-432 [PMID: 30858618]
  57. J Immunol. 2012 Jul 1;189(1):128-37 [PMID: 22649201]
  58. J Biol Chem. 1988 May 25;263(15):7277-86 [PMID: 2835369]
  59. Oncotarget. 2015 Nov 17;6(36):38681-94 [PMID: 26299617]
  60. Cell Syst. 2016 Oct 26;3(4):385-394.e3 [PMID: 27693023]
  61. Commun Biol. 2023 Feb 10;6(1):163 [PMID: 36765128]
  62. Clin Cancer Res. 2021 Apr 1;27(7):2023-2037 [PMID: 33495315]
  63. J Exp Med. 2007 Oct 29;204(11):2667-77 [PMID: 17954566]
  64. J Cancer Res Clin Oncol. 2023 Aug;149(9):5497-5512 [PMID: 36469154]
  65. EBioMedicine. 2021 Apr;66:103315 [PMID: 33819739]
  66. Mol Cell Biochem. 2010 May;338(1-2):255-61 [PMID: 20054616]
  67. Proc Natl Acad Sci U S A. 2007 Dec 4;104(49):19327-32 [PMID: 18042722]
  68. Cell. 2021 Dec 9;184(25):6119-6137.e26 [PMID: 34890551]
  69. Proc Natl Acad Sci U S A. 2021 Mar 30;118(13): [PMID: 33753481]
  70. Int J Oncol. 2007 Mar;30(3):631-9 [PMID: 17273764]
  71. Oncotarget. 2017 Aug 3;8(48):83370-83383 [PMID: 29137350]
  72. Hepatobiliary Pancreat Dis Int. 2020 Apr;19(2):175-180 [PMID: 31919036]
  73. Nat Immunol. 2001 Mar;2(3):261-8 [PMID: 11224527]
  74. Nature. 2001 Jul 19;412(6844):300-7 [PMID: 11460154]
  75. Cell Metab. 2016 Oct 11;24(4):593-607 [PMID: 27667667]
  76. FASEB J. 2020 Sep;34(9):12214-12228 [PMID: 32686876]
  77. Gut. 2019 Jun;68(6):1034-1043 [PMID: 30658994]
  78. Trends Biochem Sci. 1992 Feb;17(2):72-6 [PMID: 1566332]
  79. Nat Commun. 2022 Feb 9;13(1):767 [PMID: 35140215]
  80. J Clin Med. 2020 Dec 21;9(12): [PMID: 33371431]
  81. Am J Physiol. 1993 Dec;265(6 Pt 1):L627-35 [PMID: 8279579]
  82. Cancer Lett. 2021 Jan 28;497:212-220 [PMID: 33132120]
  83. Front Immunol. 2021 Nov 18;12:777073 [PMID: 34868044]
  84. Nat Immunol. 2020 Oct;21(10):1205-1218 [PMID: 32839608]
  85. Sci Rep. 2021 Aug 17;11(1):16679 [PMID: 34404901]
  86. Mol Ther Nucleic Acids. 2021 Oct 19;26:1115-1129 [PMID: 34786214]
  87. J Biomed Res. 2016 Sep;30(5):353-360 [PMID: 27346466]
  88. Cancer Res. 2003 May 15;63(10):2649-57 [PMID: 12750293]
  89. J Immunol. 2009 May 1;182(9):5702-11 [PMID: 19380817]
  90. Cancer Cell. 2016 Dec 12;30(6):953-967 [PMID: 27960088]
  91. Nat Methods. 2009 May;6(5):377-82 [PMID: 19349980]
  92. Cancer Lett. 2022 Jan 1;524:42-56 [PMID: 34582976]

Grants

  1. F30 CA257489/NCI NIH HHS

MeSH Term

Animals
Mice
Tumor Microenvironment
Pancreatic Neoplasms
Carcinoma, Pancreatic Ductal
Fibroblasts

Word Cloud

Created with Highcharts 10.0.0PDACtumorstromastudiespancreaticsamplesmicroenvironmentsignalsfibroblastsimmunecellatlasshowT-cellssignalingsingle-cellBulkanalysesductaladenocarcinomacomplicatedTMEieendocrineexocrinecellsDespiteothersestablishedsubtypesprognosticsignificanceHoweverunderstandingunderlyingdrivingdistinctstromallandscapesstillincompleteintegrate92singleRNA-seqsevenindependentbuildreproduciblefocustumor-TMEinterdependencePatientsactivatedsynonymoushighermyofibroblasticimmunogenicfurthermoreincreasedM2-likemacrophagesregulatoryContrastinglypatients'normal'M1-likerecruitmentelevatedeffectorexhaustedaidinteroperabilityfutureprovidepretrainedtypeclassifiersubtype-basedfactorsalsovalidatemousedataUltimatelyworkleveragesheterogeneityamongcreatecomprehensivevieworchestrainteractionsgoverningCoordinateddynamicsreinforcecancersubtype

Similar Articles

Cited By