Functional Bayesian networks for discovering causality from multivariate functional data.

Fangting Zhou, Kejun He, Kunbo Wang, Yanxun Xu, Yang Ni
Author Information
  1. Fangting Zhou: Department of Statistics, Texas A&M University, College Station, Texas, USA.
  2. Kejun He: Center for Applied Statistics, Institute of Statistics and Big Data, Renmin University of China, Beijing, China. ORCID
  3. Kunbo Wang: Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, Maryland, USA.
  4. Yanxun Xu: Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, Maryland, USA. ORCID
  5. Yang Ni: Department of Statistics, Texas A&M University, College Station, Texas, USA. ORCID

Abstract

Multivariate functional data arise in a wide range of applications. One fundamental task is to understand the causal relationships among these functional objects of interest. In this paper, we develop a novel Bayesian network (BN) model for multivariate functional data where conditional independencies and causal structure are encoded by a directed acyclic graph. Specifically, we allow the functional objects to deviate from Gaussian processes, which is the key to unique causal structure identification even when the functions are measured with noises. A fully Bayesian framework is designed to infer the functional BN model with natural uncertainty quantification through posterior summaries. Simulation studies and real data examples demonstrate the practical utility of the proposed model.

Keywords

References

  1. J Am Stat Assoc. 2012 Dec 21;107(500):1297-1309 [PMID: 25076802]
  2. J Am Stat Assoc. 2019;114(526):495-513 [PMID: 31235987]
  3. J Am Stat Assoc. 2016;111(514):772-786 [PMID: 28018013]
  4. Brain Res Bull. 1995;38(6):531-8 [PMID: 8590074]
  5. Biometrika. 2009 Dec;96(4):821-834 [PMID: 22822246]
  6. J Am Stat Assoc. 2012 Jan 1;107(497):152-167 [PMID: 24574574]
  7. J R Stat Soc Series B Stat Methodol. 2022 Apr;84(2):600-629 [PMID: 35450387]
  8. Biometrics. 2019 Dec;75(4):1321-1333 [PMID: 31254384]
  9. Biometrika. 2011 Jun;98(2):291-306 [PMID: 23049129]
  10. J Am Stat Assoc. 2011 Sep 1;106(495):1167-1179 [PMID: 22308015]
  11. J Neurosci Methods. 2004 Mar 15;134(1):9-21 [PMID: 15102499]

Grants

  1. R01 GM148974/NIGMS NIH HHS
  2. R01 MH128085/NIMH NIH HHS
  3. 1R01GM148974-01/NIGMS NIH HHS
  4. R01MH128085/NIMH NIH HHS

MeSH Term

Bayes Theorem
Causality
Computer Simulation
Uncertainty

Word Cloud

Created with Highcharts 10.0.0functionaldatacausalBayesianmultivariatestructureobjectsBNmodeldirectedacyclicMultivariatearisewiderangeapplicationsOnefundamentaltaskunderstandrelationshipsamonginterestpaperdevelopnovelnetworkconditionalindependenciesencodedgraphSpecificallyallowdeviateGaussianprocesseskeyuniqueidentificationevenfunctionsmeasurednoisesfullyframeworkdesignedinfernaturaluncertaintyquantificationposteriorsummariesSimulationstudiesrealexamplesdemonstratepracticalutilityproposed modelFunctionalnetworksdiscoveringcausalitydiscoverygraphslongitudinal/functionalnon-Gaussianitylearning

Similar Articles

Cited By