Down-Regulation of HSP by Pd-Cu Nanozymes for NIR Light Triggered Mild-Temperature Photothermal Therapy Against Wound Bacterial Infection: In vitro and in vivo Assessments.

Yan Zhou, Zekun Zhou, Xiaojuan Wu, Zefeng Wang, Wangdan Qi, Jing Yang, Liming Qing, Juyu Tang, Le Deng
Author Information
  1. Yan Zhou: State Key Laboratory of Developmental Biology of Freshwater Fish, Department of Microbiology, College of Life Science, Hunan Normal University, Changsha, Hunan, People's Republic of China.
  2. Zekun Zhou: Department of Orthopedics, Hand and Microsurgery, Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China.
  3. Xiaojuan Wu: State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha, Hunan, People's Republic of China.
  4. Zefeng Wang: State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha, Hunan, People's Republic of China.
  5. Wangdan Qi: State Key Laboratory of Developmental Biology of Freshwater Fish, Department of Microbiology, College of Life Science, Hunan Normal University, Changsha, Hunan, People's Republic of China.
  6. Jing Yang: State Key Laboratory of Developmental Biology of Freshwater Fish, Department of Microbiology, College of Life Science, Hunan Normal University, Changsha, Hunan, People's Republic of China.
  7. Liming Qing: Department of Orthopedics, Hand and Microsurgery, Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China.
  8. Juyu Tang: Department of Orthopedics, Hand and Microsurgery, Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China. ORCID
  9. Le Deng: State Key Laboratory of Developmental Biology of Freshwater Fish, Department of Microbiology, College of Life Science, Hunan Normal University, Changsha, Hunan, People's Republic of China.

Abstract

Purpose: We aimed to develop an oxidative-stress-activated palladium-copper nanozyme to reduce bacterial's heat sensitivity by down-regulating heat shock proteins to overcome the shortcomings of conventional photothermal antimicrobial therapy and achieve mild photothermal bactericidal efficacy.
Methods: We first synthesized palladium-copper nanozymes (PC-NPs) by hydration and used transmission electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy to demonstrate their successful preparation. Their photothermal therapy (PTT) and chemo-dynamic therapy (CDT) activities were then determined by a series of photothermal performance tests and peroxidase-like performance tests, and the destruction of heat shock proteins by reactive oxygen species (ROS) was verified at the protein level by Western Blotting tests, providing a basis for the effective bacteria-killing by the mild-temperature photothermal treatment subsequently applied. We also validated this promising programmed and controlled antimicrobial treatment with palladium-copper nanozymes by in vivo/in vitro antimicrobial assays. A hemolysis assay, MTT cytotoxicity test and histopathological analysis were also performed to assess the in vivo safety of PC-NPs.
Results: In the micro-acidic environment of bacterial infection, PC-NPs showed peroxidase-like activity that broke down the HO at the wound into hydroxyl radicals and down-regulated bacterial heat shock proteins. The application of PC-NPs increased bacteria's sensitivity to subsequent photothermal treatment, enabling the elimination of bacteria via mild photothermal treatment.
Conclusion: The programmed synergistic catalytic enhancement of CDT and mild photothermal therapy achieves the most efficient killing of bacteria and their biofilms, which brings future thinking in the relationship between heat shock proteins and oxidative stress damage in bacteria.

Keywords

References

  1. Nat Commun. 2021 Jun 7;12(1):3375 [PMID: 34099730]
  2. Chem Soc Rev. 2017 Aug 14;46(16):4951-4975 [PMID: 28696452]
  3. J Control Release. 2021 Jan 10;329:1102-1116 [PMID: 33098913]
  4. PLoS Pathog. 2021 Sep 9;17(9):e1009872 [PMID: 34499699]
  5. Nano Today. 2018 Aug;21:106-125 [PMID: 31327979]
  6. Mayo Clin Proc. 1991 Oct;66(10):1047-63 [PMID: 1921489]
  7. J Colloid Interface Sci. 2022 Feb;607(Pt 2):1825-1835 [PMID: 34688975]
  8. ACS Infect Dis. 2021 Apr 9;7(4):695-720 [PMID: 33733747]
  9. Small. 2023 Mar;19(11):e2207142 [PMID: 36651009]
  10. Crit Rev Anal Chem. 2021;51(5):454-481 [PMID: 32233874]
  11. Chem Soc Rev. 2019 Jul 15;48(14):3683-3704 [PMID: 31119258]
  12. ACS Nano. 2019 Nov 26;13(11):12694-12702 [PMID: 31644267]
  13. Biomater Sci. 2021 Jan 5;9(1):10-22 [PMID: 32525140]
  14. ACS Nano. 2021 Apr 27;15(4):6008-6029 [PMID: 33792292]
  15. Chem Commun (Camb). 2019 Jun 13;55(49):6964-6996 [PMID: 31140997]
  16. Adv Mater. 2023 Feb 28;:e2210455 [PMID: 36854170]
  17. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):11019-23 [PMID: 8248205]
  18. ACS Biomater Sci Eng. 2019 Oct 14;5(10):5169-5179 [PMID: 33455223]
  19. Nanomaterials (Basel). 2020 Jun 06;10(6): [PMID: 32517253]
  20. Clin Infect Dis. 2019 May 17;68(11):1952-1959 [PMID: 30256927]
  21. J Control Release. 2020 Dec 10;328:251-262 [PMID: 32889053]
  22. Nanoscale. 2017 Nov 2;9(42):16175-16182 [PMID: 28770920]
  23. Pharmaceutics. 2022 Feb 16;14(2): [PMID: 35214158]
  24. Nat Nanotechnol. 2007 Sep;2(9):577-83 [PMID: 18654371]
  25. Mayo Clin Proc. 1991 Nov;66(11):1165-70 [PMID: 1943250]
  26. Nanoscale. 2019 May 9;11(18):8680-8691 [PMID: 31012895]
  27. ACS Appl Mater Interfaces. 2021 Aug 11;13(31):37535-37544 [PMID: 34324300]
  28. Angew Chem Int Ed Engl. 2016 Jun 1;55(23):6600-26 [PMID: 27000559]
  29. ACS Nano. 2016 Mar 22;10(3):3674-84 [PMID: 26909865]
  30. Int J Mol Sci. 2018 Dec 13;19(12): [PMID: 30551592]
  31. Chem Soc Rev. 2021 Dec 13;50(24):13467-13480 [PMID: 34787131]
  32. Adv Healthc Mater. 2022 Jan;11(1):e2101722 [PMID: 34569171]
  33. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2022 Mar;14(2):e1769 [PMID: 34939348]
  34. Biosens Bioelectron. 2022 Dec 15;218:114768 [PMID: 36240630]
  35. Chem Soc Rev. 2019 Feb 18;48(4):1004-1076 [PMID: 30534770]
  36. Chem Rev. 2019 Mar 27;119(6):4357-4412 [PMID: 30801188]
  37. Nat Phys. 2018 Sep;14(9):954-960 [PMID: 30906420]
  38. ACS Appl Mater Interfaces. 2020 Aug 5;12(31):35626-35637 [PMID: 32657116]
  39. Acta Biomater. 2022 Aug;148:119-132 [PMID: 35709939]
  40. Microbiol Mol Biol Rev. 2010 Sep;74(3):417-33 [PMID: 20805405]
  41. J Hazard Mater. 2023 Jan 15;442:130042 [PMID: 36182890]
  42. Nat Rev Microbiol. 2016 Aug 11;14(9):563-75 [PMID: 27510863]
  43. Chem Soc Rev. 2021 Aug 2;50(15):8762-8789 [PMID: 34159993]
  44. Prog Mater Sci. 2019 Jan;99:1-26 [PMID: 30568319]
  45. Angew Chem Int Ed Engl. 2022 Dec 12;61(50):e202209245 [PMID: 36264713]
  46. Adv Sci (Weinh). 2020 Apr 06;7(10):1902913 [PMID: 32440470]
  47. Science. 2021 Jun 11;372(6547):1153 [PMID: 34112683]
  48. Biology (Basel). 2021 Feb 10;10(2): [PMID: 33578705]
  49. Int J Nanomedicine. 2021 Aug 26;16:5831-5867 [PMID: 34475754]
  50. Small Methods. 2022 Nov;6(11):e2200997 [PMID: 36202750]
  51. Adv Mater. 2019 Nov;31(45):e1804838 [PMID: 30379355]
  52. Front Immunol. 2022 Aug 05;13:947789 [PMID: 35990630]
  53. Theranostics. 2019 May 31;9(14):4192-4207 [PMID: 31281541]

MeSH Term

Humans
Copper
Down-Regulation
Hydrogen Peroxide
Palladium
Photothermal Therapy
Temperature
Bacteria
Bacterial Infections

Chemicals

Copper
Hydrogen Peroxide
Palladium

Word Cloud

Created with Highcharts 10.0.0photothermalheattherapyshockproteinsPC-NPstreatmentpalladium-copperantimicrobialmildtestsbacteriananozymesensitivitynanozymesCDTperformanceperoxidase-likereactiveoxygenspeciesROSmild-temperaturealsoprogrammedvitrovivobacterialPurpose:aimeddevelopoxidative-stress-activatedreducebacterial'sdown-regulatingovercomeshortcomingsconventionalachievebactericidalefficacyMethods:firstsynthesizedhydrationusedtransmissionelectronmicroscopyX-raydiffractionFouriertransforminfraredspectroscopydemonstratesuccessfulpreparationPTTchemo-dynamicactivitiesdeterminedseriesdestructionverifiedproteinlevelWesternBlottingprovidingbasiseffectivebacteria-killingsubsequentlyappliedvalidatedpromisingcontrolledvivo/inassayshemolysisassayMTTcytotoxicitytesthistopathologicalanalysisperformedassesssafetyResults:micro-acidicenvironmentinfectionshowedactivitybrokeHOwoundhydroxylradicalsdown-regulatedapplicationincreasedbacteria'ssubsequentenablingeliminationviaConclusion:synergisticcatalyticenhancementachievesefficientkillingbiofilmsbringsfuturethinkingrelationshipoxidativestressdamageDown-RegulationHSPPd-CuNanozymesNIRLightTriggeredMild-TemperaturePhotothermalTherapyWoundBacterialInfection:AssessmentsDnaKantibiofilm

Similar Articles

Cited By