What credentials are required for robotic-assisted surgery in reconstructive and functional urology?

Frances Harley, Eva Fong, Henry Han-I Yao, Hashim Hashim, Helen E O'Connell
Author Information
  1. Frances Harley: Department of Surgery University of Melbourne Melbourne Victoria Australia. ORCID
  2. Eva Fong: Department of Urology Urology Institute Auckland New Zealand.
  3. Henry Han-I Yao: Department of Surgery University of Melbourne Melbourne Victoria Australia.
  4. Hashim Hashim: Bristol Urological Institute Southmead Hospital, North Bristol NHS Trust Bristol UK.
  5. Helen E O'Connell: Department of Surgery University of Melbourne Melbourne Victoria Australia.

Abstract

Introduction: The increasing popularity of robotic assisted surgery (RAS) as it is implemented in to sub specialities poses many challenges to ensuring standards in quality and safety. The area of Reconstructive and Functional Urology (RFU) has a wide range and largely complex heterogeneous procedures. In recent years RFU has started to incorporate RAS as the primary method to undertake these procedures due to improved vision, dexterity, and access to deep cavities. To ensure patient safety majority of institutions maintain minimal requirements to operate using RAS however across specialities and institutions these greatly vary.
Methods: A narrative review of all the relevant papers known to the author was conducted.
Results: Specific challenges facing RFU is the inability to rely on case numbers as a surrogate means to measure competency as well the ongoing consideration of how to differentiate between surgeons with robotic training and those with the clinical experience specific to RFU.
Conclusion: This review explores current models of training and credentialling and assess how it can be adapted to suggest a standardised guideline for RFU to ensure the highest standards of patient care.

Keywords

References

  1. JAMA Surg. 2020 Jul 1;155(7):607-615 [PMID: 32432666]
  2. PLoS One. 2017 Apr 20;12(4):e0175026 [PMID: 28426695]
  3. Eur Urol. 2014 Aug;66(2):303-18 [PMID: 24631406]
  4. J Robot Surg. 2023 Feb;17(1):125-129 [PMID: 35384594]
  5. Urology. 2015 Sep;86(3):634-8 [PMID: 26123519]
  6. Urology. 2011 Mar;77(3):730-4 [PMID: 21167564]
  7. Am J Obstet Gynecol. 2019 Nov;221(5):483.e1-483.e11 [PMID: 31152711]
  8. Int Urogynecol J. 2021 Oct;32(10):2863-2866 [PMID: 33635350]
  9. J Endourol. 2022 Apr;36(4):477-492 [PMID: 34931531]
  10. BJU Int. 2015 Jul;116(1):93-101 [PMID: 25359658]
  11. J Robot Surg. 2018 Mar;12(1):139-145 [PMID: 28451939]
  12. J Endourol. 2008 Apr;22(4):597-600; discussion 600 [PMID: 18324897]
  13. Ecancermedicalscience. 2016 Jul 06;10:651 [PMID: 27563346]
  14. BJU Int. 2021 Jul;128(1):103-111 [PMID: 33251703]
  15. PeerJ. 2019 Dec 04;7:e8166 [PMID: 31824773]
  16. Int Urogynecol J. 2016 Mar;27(3):475-81 [PMID: 26431841]
  17. Int J Med Robot. 2021 Apr;17(2):e2195 [PMID: 33124140]
  18. Eur Urol. 2015 May;67(5):937-42 [PMID: 25582931]
  19. BJU Int. 1999 May;83(7):751-4 [PMID: 10368190]
  20. Br J Anaesth. 2017 Apr 1;118(4):492-503 [PMID: 28403397]
  21. Urology. 2015 Nov;86(5):885-91 [PMID: 26344153]
  22. J Robot Surg. 2016 Sep;10(3):227-31 [PMID: 27039189]
  23. Ann Surg. 2022 Jul 1;276(1):88-93 [PMID: 33214434]
  24. Surg Endosc. 2021 May;35(5):2104-2109 [PMID: 32377839]
  25. Urol Ann. 2018 Jan-Mar;10(1):7-14 [PMID: 29416268]
  26. Cent European J Urol. 2015;68(2):245-51 [PMID: 26251754]
  27. Eur Urol Focus. 2019 May;5(3):322-328 [PMID: 31281090]
  28. J Minim Invasive Gynecol. 2015 Nov-Dec;22(6S):S242-S243 [PMID: 27679161]
  29. Br J Anaesth. 2017 Dec 1;119(suppl_1):i72-i84 [PMID: 29161400]
  30. J Endourol. 2012 Feb;26(2):147-51 [PMID: 22050486]
  31. Female Pelvic Med Reconstr Surg. 2022 Jan 1;28(1):14-19 [PMID: 34149018]
  32. Facts Views Vis Obgyn. 2019 Mar;11(1):29-41 [PMID: 31695855]
  33. J Minim Invasive Gynecol. 2014 Mar-Apr;21(2):157-67 [PMID: 24509290]
  34. J Urol. 2013 Feb;189(2):541-7 [PMID: 23260561]
  35. Ochsner J. 2013 Winter;13(4):517-24 [PMID: 24358000]
  36. J Endourol. 2021 Jun;35(6):801-807 [PMID: 33107334]
  37. J Urol. 2006 Aug;176(2):655-9 [PMID: 16813916]
  38. Int Urogynecol J. 2019 Nov;30(11):1965-1971 [PMID: 30707257]
  39. BJU Int. 2013 Apr;111(4):596-603 [PMID: 23551442]
  40. Int Neurourol J. 2010 Apr;14(1):61-4 [PMID: 21120178]
  41. BJUI Compass. 2023 Apr 27;4(5):493-500 [PMID: 37636202]
  42. Urology. 2018 Jul;117:163-165 [PMID: 29729365]
  43. Transl Androl Urol. 2018 Aug;7(4):545-557 [PMID: 30211045]
  44. World J Urol. 2017 Dec;35(12):1907-1911 [PMID: 28929299]
  45. Urology. 2022 Oct;168:90-95 [PMID: 35908739]
  46. J Surg Educ. 2017 May - Jun;74(3):486-494 [PMID: 27932307]
  47. J Urol. 2007 Dec;178(6):2406-10; discussion 2410 [PMID: 17937944]

Word Cloud

Created with Highcharts 10.0.0RFUsurgeryRAStrainingroboticspecialitieschallengesstandardssafetyproceduresensurepatientinstitutionsreviewreconstructivefunctionalIntroduction:increasingpopularityassistedimplementedsubposesmanyensuringqualityareaReconstructiveFunctionalUrologywiderangelargelycomplexheterogeneousrecentyearsstartedincorporateprimarymethodundertakedueimprovedvisiondexterityaccessdeepcavitiesmajoritymaintainminimalrequirementsoperateusinghoweveracrossgreatlyvaryMethods:narrativerelevantpapersknownauthorconductedResults:SpecificfacinginabilityrelycasenumberssurrogatemeansmeasurecompetencywellongoingconsiderationdifferentiatesurgeonsclinicalexperiencespecificConclusion:explorescurrentmodelscredentiallingassesscanadaptedsuggeststandardisedguidelinehighestcarecredentialsrequiredrobotic-assistedurology?credentialingrobotic‐assisted

Similar Articles

Cited By