The Application of Deep Learning to Electroencephalograms, Magnetic Resonance Imaging, and Implants for the Detection of Epileptic Seizures: A Narrative Review.

Arihant Singh, Vivek R Velagala, Tanishq Kumar, Rajoshee R Dutta, Tushar Sontakke
Author Information
  1. Arihant Singh: Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND.
  2. Vivek R Velagala: Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND.
  3. Tanishq Kumar: Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND.
  4. Rajoshee R Dutta: Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND.
  5. Tushar Sontakke: Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND.

Abstract

Epilepsy is a neurological disorder characterized by recurrent seizures affecting millions worldwide. Medically intractable seizures in epilepsy patients are not only detrimental to the quality of life but also pose a significant threat to their safety. Outcomes of epilepsy therapy can be improved by early detection and intervention during the interictal window period. Electroencephalography is the primary diagnostic tool for epilepsy, but accurate interpretation of seizure activity is challenging and highly time-consuming. Machine learning (ML) and deep learning (DL) algorithms enable us to analyze complex EEG data, which can not only help us diagnose but also locate epileptogenic zones and predict medical and surgical treatment outcomes. DL models such as convolutional neural networks (CNNs), inspired by visual processing, can be used to classify EEG activity. By applying preprocessing techniques, signal quality can be enhanced by denoising and artifact removal. DL can also be incorporated into the analysis of magnetic resonance imaging (MRI) data, which can help in the localization of epileptogenic zones in the brain. Proper detection of these zones can help in good neurosurgical outcomes. Recent advancements in DL have facilitated the implementation of these systems in neural implants and wearable devices, allowing for real-time seizure detection. This has the potential to transform the management of drug-refractory epilepsy. This review explores the application of ML and DL techniques to Electroencephalograms (EEGs), MRI, and wearable devices for epileptic seizure detection. This review briefly explains the fundamentals of both artificial intelligence (AI) and DL, highlighting these systems' potential advantages and undeniable limitations.

Keywords

References

  1. World Neurosurg. 2018 Jan;109:476-486.e1 [PMID: 28986230]
  2. Radiol Artif Intell. 2022 Nov 16;5(1):e220028 [PMID: 36721408]
  3. Handb Clin Neurol. 2013;111:447-53 [PMID: 23622193]
  4. Brief Bioinform. 2018 Nov 27;19(6):1236-1246 [PMID: 28481991]
  5. Ann Indian Acad Neurol. 2015 Jul-Sep;18(3):263-77 [PMID: 26425001]
  6. Inf Fusion. 2022 Jan;77:29-52 [PMID: 34980946]
  7. J Neural Eng. 2018 Apr;15(2):021004 [PMID: 29345632]
  8. Sensors (Basel). 2012;12(2):1211-79 [PMID: 22438708]
  9. Curr Neurol Neurosci Rep. 2016 Sep;16(9):80 [PMID: 27443647]
  10. Comput Intell Neurosci. 2010;:630649 [PMID: 20148074]
  11. IEEE Trans Biomed Eng. 2000 Sep;47(9):1185-94 [PMID: 11008419]
  12. Sensors (Basel). 2013 May 13;13(5):6272-94 [PMID: 23669713]
  13. Biomed Res Int. 2020 Nov 5;2020:5193707 [PMID: 33204701]
  14. J Neural Eng. 2022 Dec 15;19(6): [PMID: 36541556]
  15. Nat Rev Neurol. 2020 Aug;16(8):440-456 [PMID: 32669685]
  16. Nat Neurosci. 2015 Mar;18(3):367-72 [PMID: 25710839]
  17. Circulation. 2015 Nov 17;132(20):1920-30 [PMID: 26572668]
  18. IEEE Trans Neural Syst Rehabil Eng. 2023;31:1321-1332 [PMID: 37027542]
  19. Commun Med (Lond). 2023 Feb 27;3(1):33 [PMID: 36849746]
  20. Epilepsia. 2012 Sep;53(9):1563-9 [PMID: 22738069]
  21. J Neural Eng. 2019 Jul 23;16(5):056003 [PMID: 31042684]
  22. IEEE Rev Biomed Eng. 2009;2:187-199 [PMID: 20442804]
  23. Continuum (Minneap Minn). 2019 Apr;25(2):306-321 [PMID: 30921011]
  24. Brain Commun. 2021 Dec 08;4(2):fcab284 [PMID: 35243343]
  25. World J Gastroenterol. 2022 Feb 7;28(5):605-607 [PMID: 35316964]
  26. Comput Math Methods Med. 2022 Jan 20;2022:7751263 [PMID: 35096136]
  27. J Neurosci Methods. 2022 Feb 15;368:109441 [PMID: 34942271]
  28. Dis Mon. 2003 Jul;49(7):426-78 [PMID: 12838266]
  29. Brief Bioinform. 2021 Mar 22;22(2):1592-1603 [PMID: 33569575]
  30. Rev Infirm. 2018 Aug - Sep;67(243):14-16 [PMID: 30262002]
  31. J Neurol Neurosurg Psychiatry. 2007 Sep;78(9):993-6 [PMID: 17237141]
  32. Epileptic Disord. 2021 Jun 1;23(3):437-458 [PMID: 34106053]
  33. Seizure. 2017 Jan;44:11-20 [PMID: 28007376]
  34. Epileptic Disord. 2020 Apr 1;22(2):143-155 [PMID: 32364504]
  35. JAMA Intern Med. 2018 Nov 1;178(11):1544-1547 [PMID: 30128552]
  36. Neural Netw. 2018 Sep;105:104-111 [PMID: 29793128]
  37. IEEE J Biomed Health Inform. 2015 Sep;19(5):1648-59 [PMID: 25248205]
  38. Discoveries (Craiova). 2020 Jun 12;8(2):e110 [PMID: 32577498]
  39. Knee Surg Sports Traumatol Arthrosc. 2023 Feb;31(2):376-381 [PMID: 36378293]
  40. J Neural Eng. 2019 Jun;16(3):031001 [PMID: 30808014]
  41. Epilepsy Behav. 2021 Apr;117:107830 [PMID: 33639439]
  42. Nat Med. 2019 Jan;25(1):24-29 [PMID: 30617335]
  43. Epilepsy Curr. 2022 Jan 12;22(2):91-96 [PMID: 35444507]
  44. Int J Environ Res Public Health. 2021 May 27;18(11): [PMID: 34072232]
  45. BMJ Clin Evid. 2015 Apr 17;2015: [PMID: 25882687]
  46. Rev Neurol (Paris). 2020 Jun;176(6):408-426 [PMID: 32331701]
  47. Insights Imaging. 2018 Aug;9(4):611-629 [PMID: 29934920]
  48. Epilepsia. 2014 Apr;55(4):475-82 [PMID: 24730690]
  49. Epilepsia. 2017 Apr;58(4):531-542 [PMID: 28276064]
  50. IEEE Trans Biomed Eng. 2022 Jan;69(1):401-411 [PMID: 34242159]
  51. Epilepsy Res. 2014 Dec;108(10):1797-805 [PMID: 25282706]
  52. Front Digit Health. 2021 Feb 10;3:559103 [PMID: 34713078]
  53. J Neural Eng. 2021 Apr 26;18(4): [PMID: 33794507]
  54. Lancet. 2019 Feb 16;393(10172):689-701 [PMID: 30686584]
  55. Neuroimage. 2011 May 15;56(2):387-99 [PMID: 21172442]
  56. Handb Clin Neurol. 2020;168:249-262 [PMID: 32164856]
  57. Seizure. 2019 Oct;71:66-79 [PMID: 31207395]
  58. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2021 Feb 25;38(1):39-46 [PMID: 33899426]
  59. Front Med. 2020 Oct;14(5):630-641 [PMID: 31912429]
  60. Acad Med. 2019 Oct;94(10):1433-1436 [PMID: 31094727]
  61. IEEE J Biomed Health Inform. 2019 Jan;23(1):83-94 [PMID: 30624207]

Word Cloud

Created with Highcharts 10.0.0canDLepilepsydetectionseizuresalsoseizurelearninghelpzonesqualityactivityMLdeepusEEGdataepileptogenicoutcomesneuraltechniquesmagneticresonanceimagingMRIimplantswearabledevicespotentialreviewElectroencephalogramsartificialintelligenceEpilepsyneurologicaldisordercharacterizedrecurrentaffectingmillionsworldwideMedicallyintractablepatientsdetrimentallifeposesignificantthreatsafetyOutcomestherapyimprovedearlyinterventioninterictalwindowperiodElectroencephalographyprimarydiagnostictoolaccurateinterpretationchallenginghighlytime-consumingMachinealgorithmsenableanalyzecomplexdiagnoselocatepredictmedicalsurgicaltreatmentmodelsconvolutionalnetworksCNNsinspiredvisualprocessingusedclassifyapplyingpreprocessingsignalenhanceddenoisingartifactremovalincorporatedanalysislocalizationbrainPropergoodneurosurgicalRecentadvancementsfacilitatedimplementationsystemsallowingreal-timetransformmanagementdrug-refractoryexploresapplicationEEGsepilepticbrieflyexplainsfundamentalsAIhighlightingsystems'advantagesundeniablelimitationsApplicationDeepLearningMagneticResonanceImagingImplantsDetectionEpilepticSeizures:NarrativeReviewelectroencephalogramsneuroimagingneurosurgery

Similar Articles

Cited By