Zn nutrients-loaded chitosan nanocomposites and their efficacy as nanopriming agents for maize () seeds.

Bongiwe Zungu, Hugues Kamdem Paumo, Joseph Lesibe Gaorongwe, Gaborone Neo Tsuene, Oziniel Ruzvidzo, Lebogang Katata-Seru
Author Information
  1. Bongiwe Zungu: Department of Chemistry, Material Science Innovation and Modelling (MaSIM) Research Focus Area, North-West University, Mmabatho, South Africa.
  2. Hugues Kamdem Paumo: Department of Chemistry, Material Science Innovation and Modelling (MaSIM) Research Focus Area, North-West University, Mmabatho, South Africa.
  3. Joseph Lesibe Gaorongwe: Department of Botany, School of Biological Sciences, North-West University, Potchefstroom, South Africa.
  4. Gaborone Neo Tsuene: Department of Botany, School of Biological Sciences, North-West University, Potchefstroom, South Africa.
  5. Oziniel Ruzvidzo: Department of Botany, School of Biological Sciences, North-West University, Potchefstroom, South Africa.
  6. Lebogang Katata-Seru: Department of Chemistry, Material Science Innovation and Modelling (MaSIM) Research Focus Area, North-West University, Mmabatho, South Africa.

Abstract

Recent breakthroughs in agro-inputs research have led to the development of nanomaterials that can promote precision agriculture and better environmental security. The agricultural sector is increasingly facing the negative impacts of changing climates due to various stress conditions. To curb this scenario, economical and low-risk practices such as decreasing fertilizer inputs and seed priming have been promoted. In the current study, the aqueous extract was used to nucleate the Zn ionic species and grow the zinc oxide nanoparticles (ZnO NPs). The developed nanocomposites and their ionic zinc precursor were then integrated into tripolyphosphate (TPP)-crosslinked chitosan (CS/TPP) nanostructures by ionic gelation. Advanced physicochemical characterization techniques (SEM, EDS, TEM, DLS, FTIR, TGA, and XPS) were exploited to report the morphology, hydrodynamic size, surface charge, and structural organization of the developed nanomaterials. These revealed positively charged particles with hydrodynamic size in the 149-257 nm range. The NPs were used as priming agents for seeds. At 0.04%, the ZnO-loaded CS/TPP NPs achieved higher root and shoot elongation in 10-day old seedlings compared to other treatments. The pristine CS/TPP NPs, Zn(II)-laden CS/TPP NPs, and ZnO-loaded CS/TPP NPs at 0.01% significantly promoted the early seedling development of seeds under salt stress. This represents the first report showing ZnO integrated chitosan nanocomposites as an auspicious nanopriming agent for stimulating the seed germination of maize. The study envisages offering perspectives on utilizing green nanotechnology to improve the early seedling development of maize. Furthermore, it has the potential to contribute towards UN SDG 2, thus addressing the threats to global food insecurity and doubling agricultural productivity by 2030.

Keywords

References

  1. Int J Environ Res Public Health. 2015 Nov 30;12(12):15100-9 [PMID: 26633437]
  2. ACS Biomater Sci Eng. 2019 Dec 9;5(12):6355-6360 [PMID: 33417810]
  3. Sci Rep. 2016 Nov 02;6:36396 [PMID: 27805022]
  4. Biology (Basel). 2021 Oct 21;10(11): [PMID: 34827068]
  5. Int J Biol Macromol. 2021 Oct 31;189:170-182 [PMID: 34425117]
  6. Carbohydr Polym. 2022 Feb 1;277:118876 [PMID: 34893279]
  7. Int J Biol Macromol. 2020 Jul 1;154:683-697 [PMID: 32194112]
  8. J Sci Food Agric. 2013 May;93(7):1699-705 [PMID: 23197363]
  9. Plants (Basel). 2022 Mar 08;11(6): [PMID: 35336599]
  10. Environ Sci Technol. 2008 Aug 1;42(15):5580-5 [PMID: 18754479]
  11. Inorg Chem. 2021 Sep 6;60(17):13453-13460 [PMID: 34403579]
  12. Plant Cell Environ. 2023 Apr;46(4):1157-1175 [PMID: 36071575]
  13. J Hazard Mater. 2021 Apr 5;407:124816 [PMID: 33352425]
  14. Pharmaceutics. 2018 May 18;10(2): [PMID: 29783687]
  15. ACS Omega. 2021 Sep 28;6(40):26262-26272 [PMID: 34660985]
  16. J Colloid Interface Sci. 2018 Dec 15;532:500-516 [PMID: 30103133]
  17. Int J Biol Macromol. 2019 Apr 15;127:126-135 [PMID: 30610949]
  18. Sci Rep. 2014 Apr 16;4:4706 [PMID: 24736500]
  19. Physiol Mol Biol Plants. 2019 Mar;25(2):313-326 [PMID: 30956416]
  20. Plants (Basel). 2021 Jan 26;10(2): [PMID: 33530608]
  21. J Ethnopharmacol. 2008 Oct 28;119(3):630-52 [PMID: 18606217]
  22. Front Plant Sci. 2018 Dec 07;9:1771 [PMID: 30581446]
  23. Plants (Basel). 2022 Aug 02;11(15): [PMID: 35956492]
  24. Artif Cells Nanomed Biotechnol. 2017 Dec;45(8):1751-1761 [PMID: 28140658]
  25. Plants (Basel). 2022 May 23;11(10): [PMID: 35631811]
  26. Plant Physiol Biochem. 2021 Mar;160:341-351 [PMID: 33548801]
  27. Chemosphere. 2022 Apr;292:133451 [PMID: 34973251]
  28. Polymers (Basel). 2021 Feb 02;13(3): [PMID: 33540931]
  29. PLoS One. 2022 Mar 24;17(3):e0264967 [PMID: 35324949]
  30. Carbohydr Polym. 2017 Jun 1;165:394-401 [PMID: 28363565]
  31. Sci Rep. 2022 Nov 18;12(1):19869 [PMID: 36400832]
  32. Biotechnol Res Int. 2016;2016:7830182 [PMID: 26904295]
  33. J Zhejiang Univ Sci B. 2009 Jun;10(6):427-33 [PMID: 19489108]
  34. Toxicol Rep. 2021 Nov 30;8:1970-1978 [PMID: 34934635]
  35. Arch Microbiol. 2021 Dec 29;204(1):95 [PMID: 34964906]
  36. Materials (Basel). 2021 Oct 30;14(21): [PMID: 34772061]
  37. Biomaterials. 2002 May;23(10):2241-7 [PMID: 11962665]
  38. Sci Total Environ. 2019 Apr 15;661:654-663 [PMID: 30682615]
  39. Plant Physiol Biochem. 2021 Feb;159:53-66 [PMID: 33338820]
  40. J Hazard Mater. 2017 Jan 15;322(Pt A):2-16 [PMID: 27267650]
  41. BMC Plant Biol. 2021 Oct 7;21(1):457 [PMID: 34620078]
  42. BMC Plant Biol. 2022 Jul 22;22(1):364 [PMID: 35869431]
  43. J Agric Food Chem. 2019 Jun 26;67(25):6911-6920 [PMID: 31194542]
  44. Int J Biol Macromol. 2021 Jun 30;181:349-356 [PMID: 33781815]

Word Cloud

Created with Highcharts 10.0.0NPsCS/TPPdevelopmentnanocompositeschitosanZnioniczincseedsearlynanoprimingmaizenanomaterialsagriculturalstressseedprimingpromotedstudyusedoxideZnOdevelopedintegratedreporthydrodynamicsizeagents0ZnO-loadedseedlingsseedlinggerminationRecentbreakthroughsagro-inputsresearchledcanpromoteprecisionagriculturebetterenvironmentalsecuritysectorincreasinglyfacingnegativeimpactschangingclimatesduevariousconditionscurbscenarioeconomicallow-riskpracticesdecreasingfertilizerinputscurrentaqueousextractnucleatespeciesgrownanoparticlesprecursortripolyphosphateTPP-crosslinkednanostructuresgelationAdvancedphysicochemicalcharacterizationtechniquesSEMEDSTEMDLSFTIRTGAXPSexploitedmorphologysurfacechargestructuralorganizationrevealedpositivelychargedparticles149-257 nmrange04%achievedhigherrootshootelongation10-dayoldcomparedtreatmentspristineII-laden01%significantlysaltrepresentsfirstshowingauspiciousagentstimulatingenvisagesofferingperspectivesutilizinggreennanotechnologyimproveFurthermorepotentialcontributetowardsUNSDG2thusaddressingthreatsglobalfoodinsecuritydoublingproductivity2030nutrients-loadedefficacytraitsnanofertilizers

Similar Articles

Cited By (1)