Qixun Feng: Key Laboratory of Structure-Based Drugs Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China.
Honggao Duan: Key Laboratory of Structure-Based Drugs Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China.
Xinglong Zhou: Key Laboratory of Structure-Based Drugs Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China.
Yuning Wang: Key Laboratory of Structure-Based Drugs Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China.
Jinda Zhang: Key Laboratory of Structure-Based Drugs Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China.
Haoge Zhang: Key Laboratory of Structure-Based Drugs Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China.
Guoliang Chen: Key Laboratory of Structure-Based Drugs Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China.
Xuefei Bao: Key Laboratory of Structure-Based Drugs Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China.
DNA methyltransferase (DNMT) is a conserved family of Cytosine methylases, which plays a crucial role in the regulation of Epigenetics. They have been considered promising therapeutic targets for cancer. Among the DNMT family, mutations in the DNMT3A subtype are particularly important in hematologic malignancies. The development of specific DNMT3A subtype inhibitors to validate the therapeutic potential of DNMT3A in certain diseases is a significant task. In this review, we summarized the small molecule inhibitors of DNMT3A discovered in recent years and their inhibitory activities, and classified them based on their inhibitory mechanisms.
Moore L.D.; Le T.; Fan G.; DNA methylation and its basic function. Neuropsychopharmacology 2013,38(1),23-38
[DOI: 10.1038/npp.2012.112]
You J.S.; Jones P.A.; Cancer genetics and epigenetics: Two sides of the same coin? Cancer Cell 2012,22(1),9-20
[DOI: 10.1016/j.ccr.2012.06.008]
Hoang N.M.; Rui L.; DNA methyltransferases in hematological malignancies. J Genet Genom 2020,47(7),361-372
[DOI: 10.1016/j.jgg.2020.04.006]
Zhang H.; Ying H.; Wang X.; Methyltransferase DNMT3B in leukemia. Leuk Lymphoma 2020,61(2),263-273
[DOI: 10.1080/10428194.2019.1666377]
Hamidi T.; Singh A.K.; Chen T.; Genetic alterations of DNA methylation machinery in human diseases. Epigenomics 2015,7(2),247-265
[DOI: 10.2217/epi.14.80]
Li E.; Zhang Y.; DNA methylation in mammals. Cold Spring Harb Perspect Biol 2014,6(5),a019133
[DOI: 10.1101/cshperspect.a019133]
Barau J.; Teissandier A.; Zamudio N.; Roy S.; Nalesso V.; Hérault Y.; Guillou F.; Bourc’his D.; The DNA methyltransferase DNMT3C protects male germ cells from transposon activity. Science 2016,354(6314),909-912
[DOI: 10.1126/science.aah5143]
Jia D.; Jurkowska R.Z.; Zhang X.; Jeltsch A.; Cheng X.; Structure of Dnmt3a bound to Dnmt3L suggests a model for de novo DNA methylation. Nature 2007,449(7159),248-251
[DOI: 10.1038/nature06146]
Fernández-Sanlés A.; Sayols-Baixeras S.; Subirana I.; Sentí M.; Pérez-Fernández S.; de Castro Moura M.; Esteller M.; Marrugat J.; Elosua R.; DNA methylation biomarkers of myocardial infarction and cardiovascular disease. Clin Epigenet 2021,13(1),86
[DOI: 10.1186/s13148-021-01078-6]
Teitell M.; Richardson B.; Dna methylation in the immune system. Clin Immunol 2003,109(1),2-5
[DOI: 10.1016/S1521-6616(03)00224-9]
Weng Y.L.; An R.; Shin J.; Song H.; Ming G.; DNA modifications and neurological disorders. Neurotherapeutics 2013,10(4),556-567
[DOI: 10.1007/s13311-013-0223-4]
Arguelles A.O.; Meruvu S.; Bowman J.D.; Choudhury M.; Are epigenetic drugs for diabetes and obesity at our door step? Drug Discov Today 2016,21(3),499-509
[DOI: 10.1016/j.drudis.2015.12.001]
Michalak E.M.; Burr M.L.; Bannister A.J.; Dawson M.A.; The roles of DNA, RNA and histone methylation in ageing and cancer. Nat Rev Mol Cell Biol 2019,20(10),573-589
[DOI: 10.1038/s41580-019-0143-1]
Gaudet F.; Hodgson J.G.; Eden A.; Jackson-Grusby L.; Dausman J.; Gray J.W.; Leonhardt H.; Jaenisch R.; Induction of tumors in mice by genomic hypomethylation. Science 2003,300(5618),489-492
[DOI: 10.1126/science.1083558]
Pan Y.; Liu G.; Zhou F.; Su B.; Li Y.; DNA methylation profiles in cancer diagnosis and therapeutics. Clin Exp Med 2018,18(1),1-14
[DOI: 10.1007/s10238-017-0467-0]
Ali S.R.; Jordan M.; Nagarajan P.; Amit M.; Nerve density and neuronal biomarkers in cancer. Cancers 2022,14(19),4817
[DOI: 10.3390/cancers14194817]
Medina-Franco J.L.; Méndez-Lucio O.; Dueñas-González A.; Yoo J.; Discovery and development of DNA methyltransferase inhibitors using in silico approaches. Drug Discov Today 2015,20(5),569-577
[DOI: 10.1016/j.drudis.2014.12.007]
Robertson K.D.; Uzvolgyi E.; Liang G.; Talmadge C.; Sumegi J.; Gonzales F.A.; Jones P.A.; The human DNA methyltransferases (DNMTs) 1, 3a and 3b: Coordinate mRNA expression in normal tissues and overexpression in tumors. Nucleic Acids Res 1999,27(11),2291-2298
[DOI: 10.1093/nar/27.11.2291]
Xie S.; Wang Z.; Okano M.; Nogami M.; Li Y.; He W.W.; Okumura K.; Li E.; Cloning, expression and chromosome locations of the human DNMT3 gene family. Gene 1999,236(1),87-95
[DOI: 10.1016/S0378-1119(99)00252-8]
Weisenberger D.J.; Velicescu M.; Preciado-Lopez M.A.; Gonzales F.A.; Tsai Y.C.; Liang G.; Jones P.A.; Identification and characterization of alternatively spliced variants of DNA methyltransferase 3a in mammalian cells. Gene 2002,298(1),91-99
[DOI: 10.1016/S0378-1119(02)00976-9]
Yanagisawa Y.; Ito E.; Yuasa Y.; Maruyama K.; The human DNA methyltransferases DNMT3A and DNMT3B have two types of promoters with different CpG contents. Biochim Biophys Acta Gene Struct Expr 2002,1577(3),457-465
[DOI: 10.1016/S0167-4781(02)00482-7]
Uysal F.; Akkoyunlu G.; Ozturk S.; Dynamic expression of DNA methyltransferases (DNMTs) in oocytes and early embryos. Biochimie 2015,116,103-113
[DOI: 10.1016/j.biochi.2015.06.019]
Ren W.; Gao L.; Song J.; Structural basis of DNMT1 and DNMT3A-Mediated DNA methylation. Genes 2018,9(12),620
[DOI: 10.3390/genes9120620]
Zeng Y.; Chen T.; DNA methylation reprogramming during mammalian development. Genes 2019,10(4),257
[DOI: 10.3390/genes10040257]
Chen Z.; Zhang Y.; Role of mammalian DNA methyltransferases in development. Annu Rev Biochem 2020,89(1),135-158
[DOI: 10.1146/annurev-biochem-103019-102815]
Baubec T.; Colombo D.F.; Wirbelauer C.; Schmidt J.; Burger L.; Krebs A.R.; Akalin A.; Schübeler D.; Genomic profiling of DNA methyltransferases reveals a role for DNMT3B in genic methylation. Nature 2015,520(7546),243-247
[DOI: 10.1038/nature14176]
Sendžikaitė G.; Hanna, C.W.; Stewart-Morgan, K.R.; Ivanova, E.; Kelsey, G. A DNMT3A PWWP mutation leads to methylation of bivalent chromatin and growth retardation in mice. Nat Commun 2019,10(1),1884
[DOI: 10.1038/s41467-019-09713-w]
Guo X.; Wang L.; Li J.; Ding Z.; Xiao J.; Yin X.; He S.; Shi P.; Dong L.; Li G.; Tian C.; Wang J.; Cong Y.; Xu Y.; Structural insight into autoinhibition and histone H3-induced activation of DNMT3A. Nature 2015,517(7536),640-644
[DOI: 10.1038/nature13899]
Zhang Y.; Jurkowska R.; Soeroes S.; Rajavelu A.; Dhayalan A.; Bock I.; Rathert P.; Brandt O.; Reinhardt R.; Fischle W.; Jeltsch A.; Chromatin methylation activity of Dnmt3a and Dnmt3a/3L is guided by interaction of the ADD domain with the histone H3 tail. Nucleic Acids Res 2010,38(13),4246-4253
[DOI: 10.1093/nar/gkq147]
Li B.Z.; Huang Z.; Cui Q.Y.; Song X.H.; Du L.; Jeltsch A.; Chen P.; Li G.; Li E.; Xu G.L.; Histone tails regulate DNA methylation by allosterically activating de novo methyltransferase. Cell Res 2011,21(8),1172-1181
[DOI: 10.1038/cr.2011.92]
Saravanaraman P.; Selvam M.; Ashok C.; Srijyothi L.; Baluchamy S.; De novo methyltransferases: Potential players in diseases and new directions for targeted therapy. Biochimie 2020,176,85-102
[DOI: 10.1016/j.biochi.2020.07.004]
Lyko F.; The DNA methyltransferase family: A versatile toolkit for epigenetic regulation. Nat Rev Genet 2018,19(2),81-92
[DOI: 10.1038/nrg.2017.80]
Jeltsch A.; Jurkowska R.Z.; Allosteric control of mammalian DNA methyltransferases – a new regulatory paradigm. Nucleic Acids Res 2016,44(18),8556-8575
[DOI: 10.1093/nar/gkw723]
Gowher H.; Jeltsch A.; Mammalian DNA methyltransferases: New discoveries and open questions. Biochem Soc Trans 2018,46(5),1191-1202
[DOI: 10.1042/BST20170574]
Lukashevich O.V.; Cherepanova N.A.; Jurkovska R.Z.; Jeltsch A.; Gromova E.S.; Conserved motif VIII of murine DNA methyltransferase Dnmt3a is essential for methylation activity. BMC Biochem 2016,17(1),7
[DOI: 10.1186/s12858-016-0064-y]
Fatemi M.; Hermann A.; Pradhan S.; Jeltsch A.; The activity of the murine DNA methyltransferase Dnmt1 is controlled by interaction of the catalytic domain with the N-terminal part of the enzyme leading to an allosteric activation of the enzyme after binding to methylated DNA. J Mol Biol 2001,309(5),1189-1199
[DOI: 10.1006/jmbi.2001.4709]
Margot J.B.; Ehrenhofer-Murray A.E.; Leonhardt H.; Interactions within the mammalian DNA methyltransferase family. BMC Mol Biol 2003,4(1),7
[DOI: 10.1186/1471-2199-4-7]
Xu T.H.; Liu M.; Zhou X.E.; Liang G.; Zhao G.; Xu H.E.; Melcher K.; Jones P.A.; Structure of nucleosome-bound DNA methyltransferases DNMT3A and DNMT3B. Nature 2020,586(7827),151-155
[DOI: 10.1038/s41586-020-2747-1]
Yarychkivska O.; Tavana O.; Gu W.; Bestor T.H.; Independent functions of DNMT1 and USP7 at replication foci. Epigenet Chromat 2018,11(1),9
[DOI: 10.1186/s13072-018-0179-z]
Yarychkivska O.; Shahabuddin Z.; Comfort N.; Boulard M.; Bestor T.H.; BAH domains and a histone-like motif in DNA methyltransferase 1 (DNMT1) regulate de novo and maintenance methylation in vivo. J Biol Chem 2018,293(50),19466-19475
[DOI: 10.1074/jbc.RA118.004612]
Yu J.; Xie T.; Wang Z.; Wang X.; Zeng S.; Kang Y.; Hou T.; DNA methyltransferases: Emerging targets for the discovery of inhibitors as potent anticancer drugs. Drug Discov Today 2019,24(12),2323-2331
[DOI: 10.1016/j.drudis.2019.08.006]
Zhang Z.M.; Liu S.; Lin K.; Luo Y.; Perry J.J.; Wang Y.; Song J.; Crystal structure of human DNA methyltransferase 1. J Mol Biol 2015,427(15),2520-2531
[DOI: 10.1016/j.jmb.2015.06.001]
Xie T.; Yu J.; Fu W.; Wang Z.; Xu L.; Chang S.; Wang E.; Zhu F.; Zeng S.; Kang Y.; Hou T.; Insight into the selective binding mechanism of DNMT1 and DNMT3A inhibitors: A molecular simulation study. Phys Chem Chem Phys 2019,21(24),12931-12947
[DOI: 10.1039/C9CP02024A]
Yan X.J.; Xu J.; Gu Z.H.; Pan C.M.; Lu G.; Shen Y.; Shi J.Y.; Zhu Y.M.; Tang L.; Zhang X.W.; Liang W.X.; Mi J.Q.; Song H.D.; Li K.Q.; Chen Z.; Chen S.J.; Exome sequencing identifies somatic mutations of DNA methyltransferase gene DNMT3A in acute monocytic leukemia. Nat Genet 2011,43(4),309-315
[DOI: 10.1038/ng.788]
Walter M.J.; Ding L.; Shen D.; Shao J.; Grillot M.; McLellan M.; Fulton R.; Schmidt H.; Kalicki-Veizer J.; O’Laughlin M.; Kandoth C.; Baty J.; Westervelt P.; DiPersio J.F.; Mardis E.R.; Wilson R.K.; Ley T.J.; Graubert T.A.; Recurrent DNMT3A mutations in patients with myelodysplastic syndromes. Leukemia 2011,25(7),1153-1158
[DOI: 10.1038/leu.2011.44]
Xu J.; Wang Y.Y.; Dai Y.J.; Zhang W.; Zhang W.N.; Xiong S.M.; Gu Z.H.; Wang K.K.; Zeng R.; Chen Z.; Chen S.J.; DNMT3A Arg882 mutation drives chronic myelomonocytic leukemia through disturbing gene expression/DNA methylation in hematopoietic cells. Proc Natl Acad Sci USA 2014,111(7),2620-2625
[DOI: 10.1073/pnas.1400150111]
Zhao Z.; Wu Q.; Cheng J.; Qiu X.; Zhang J.; Fan H.; Depletion of DNMT3A suppressed cell proliferation and restored PTEN in hepatocellular carcinoma cell. J Biomed Biotechnol 2010,2010,1-10
[DOI: 10.1155/2010/737535]
Mayle A.; Yang L.; Rodriguez B.; Zhou T.; Chang E.; Curry C.V.; Challen G.A.; Li W.; Wheeler D.; Rebel V.I.; Goodell M.A.; Dnmt3a loss predisposes murine hematopoietic stem cells to malignant transformation. Blood 2015,125(4),629-638
[DOI: 10.1182/blood-2014-08-594648]
Yang L.; Rodriguez B.; Mayle A.; Park H.J.; Lin X.; Luo M.; Jeong M.; Curry C.V.; Kim S.B.; Ruau D.; Zhang X.; Zhou T.; Zhou M.; Rebel V.I.; Challen G.A.; Göttgens B.; Lee J.S.; Rau R.; Li W.; Goodell M.A.; DNMT3A loss drives enhancer hypomethylation in FLT3-ITD-associated leukemias. Cancer Cell 2016,29(6),922-934
[DOI: 10.1016/j.ccell.2016.05.003]
Wang L.; Yao J.; Sun H.; He K.; Tong D.; Song T.; Huang C.; MicroRNA-101 suppresses progression of lung cancer through the PTEN/AKT signaling pathway by targeting DNA methyltransferase 3A. Oncol Lett 2017,13(1),329-338
[DOI: 10.3892/ol.2016.5423]
Fabbri M.; Garzon R.; Cimmino A.; Liu Z.; Zanesi N.; Callegari E.; Liu S.; Alder H.; Costinean S.; Fernandez-Cymering C.; Volinia S.; Guler G.; Morrison C.D.; Chan K.K.; Marcucci G.; Calin G.A.; Huebner K.; Croce C.M.; MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci USA 2007,104(40),15805-15810
[DOI: 10.1073/pnas.0707628104]
Viré E.; Brenner C.; Deplus R.; Blanchon L.; Fraga M.; Didelot C.; Morey L.; Van Eynde A.; Bernard D.; Vanderwinden J.M.; Bollen M.; Esteller M.; Di Croce L.; de Launoit Y.; Fuks F.; The Polycomb group protein EZH2 directly controls DNA methylation. Nature 2006,439(7078),871-874
[DOI: 10.1038/nature04431]
Schlesinger Y.; Straussman R.; Keshet I.; Farkash S.; Hecht M.; Zimmerman J.; Eden E.; Yakhini Z.; Ben-Shushan E.; Reubinoff B.E.; Bergman Y.; Simon I.; Cedar H.; Polycomb-mediated methylation on Lys27 of histone H3 pre-marks genes for de novo methylation in cancer. Nat Genet 2007,39(2),232-236
[DOI: 10.1038/ng1950]
Jang K.; Kim M.; Gilbert C.A.; Simpkins F.; Ince T.A.; Slingerland J.M.; VEGFA activates an epigenetic pathway upregulating ovarian cancer-initiating cells. EMBO Mol Med 2017,9(3),304-318
[DOI: 10.15252/emmm.201606840]
Samowitz W.S.; Curtin K.; Ma K.; Edwards S.; Schaffer D.; Leppert M.F.; Slattery M.L.; Prognostic significance ofp53 mutations in colon cancer at the population level. Int J Cancer 2002,99(4),597-602
[DOI: 10.1002/ijc.10405]
Wang Y.A.; Kamarova Y.; Shen K.C.; Jiang Z.; Hahn M.J.; Wang Y.; Brooks S.C.; DNA methyltransferase-3a interacts with p53 and represses p53-mediated gene expression. Cancer Biol Ther 2005,4(10),1138-1143
[DOI: 10.4161/cbt.4.10.2073]
Mizuno S.; Chijiwa T.; Okamura T.; Akashi K.; Fukumaki Y.; Niho Y.; Sasaki H.; Expression of DNA methyltransferases DNMT1,3A, and 3B in normal hematopoiesis and in acute and chronic myelogenous leukemia. Blood 2001,97(5),1172-1179
[DOI: 10.1182/blood.V97.5.1172]
Berg T.; Guo Y.; Abdelkarim M.; Fliegauf M.; Lübbert M.; Reversal of p15/INK4b hypermethylation in AML1/ETO-positive and -negative myeloid leukemia cell lines. Leuk Res 2007,31(4),497-506
[DOI: 10.1016/j.leukres.2006.08.008]
Chan M.W.; Chan L.W.; Tang N.L.; Tong J.H.; Lo K.W.; Lee T.L.; Cheung H.Y.; Wong W.S.; Chan P.S.; Lai F.M.; To K.F.; Hypermethylation of multiple genes in tumor tissues and voided urine in urinary bladder cancer patients. Clin Cancer Res 2002,8(2),464-470
[PMID: 11839665]
Liang J.T.; Chang K.J.; Chen J.C.; Lee C.C.; Cheng Y.M.; Hsu H.C.; Wu M.S.; Wang S.M.; Lin J.T.; Cheng A.L.; Hypermethylation of the p16 gene in sporadic T3N0M0 stage colorectal cancers: Association with DNA replication error and shorter survival. Oncology 1999,57(2),149-156
[DOI: 10.1159/000012023]
Suzuki M.; Shigematsu H.; Shames D.S.; Sunaga N.; Takahashi T.; Shivapurkar N.; Iizasa T.; Frenkel E.P.; Minna J.D.; Fujisawa T.; Gazdar A.F.; Retraction Note: DNA methylation-associated inactivation of TGFβ-related genes, DRM/Gremlin, RUNX3, and HPP1 in human cancers. Br J Cancer 2013,109(12),3132
[DOI: 10.1038/bjc.2013.776]
Lu D.; Ma Y.; Zhu A.; Han Y.; An early biomarker and potential therapeutic target of RUNX 3 hypermethylation in breast cancer, a system review and meta-analysis. Oncotarget 2017,8(13),22166-22174
[DOI: 10.18632/oncotarget.13125]
Stresemann C.; Lyko F.; Modes of action of the DNA methyltransferase inhibitors azacytidine and decitabine. Int J Cancer 2008,123(1),8-13
[DOI: 10.1002/ijc.23607]
Erdmann A.; Menon Y.; Gros C.; Molinier N.; Novosad N.; Samson A.; Gregoire J.M.; Long C.; Ausseil F.; Halby L.; Arimondo P.B.; Design and synthesis of new non nucleoside inhibitors of DNMT3A. Bioorg Med Chem 2015,23(17),5946-5953
[DOI: 10.1016/j.bmc.2015.06.066]
Sergeev A.; Vorobyov A.; Yakubovskaya M.; Kirsanova O.; Gromova E.; Novel anticancer drug curaxin CBL0137 impairs DNA methylation by eukaryotic DNA methyltransferase Dnmt3a. Bioorg Med Chem Lett 2020,30(16),127296
[DOI: 10.1016/j.bmcl.2020.127296]
Shao Z.; Xu P.; Xu W.; Li L.; Liu S.; Zhang R.; Liu Y.C.; Zhang C.; Chen S.; Luo C.; Discovery of novel DNA methyltransferase 3A inhibitors via structure-based virtual screening and biological assays. Bioorg Med Chem Lett 2017,27(2),342-346
[DOI: 10.1016/j.bmcl.2016.11.023]
Yu J.; Chai X.; Pang J.; Wang Z.; Zhao H.; Xie T.; Xu L.; Sheng R.; Li D.; Zeng S.; Hou T.; Kang Y.; Discovery of novel non-nucleoside inhibitors with high potency and selectivity for DNA methyltransferase 3A. Eur J Med Chem 2022,242,114646
[DOI: 10.1016/j.ejmech.2022.114646]
Rilova E.; Erdmann A.; Gros C.; Masson V.; Aussagues Y.; Poughon-Cassabois V.; Rajavelu A.; Jeltsch A.; Menon Y.; Novosad N.; Gregoire J.M.; Vispé S.; Schambel P.; Ausseil F.; Sautel F.; Arimondo P.B.; Cantagrel F.; Design, synthesis and biological evaluation of 4-amino-N- (4-aminophenyl)benzamide analogues of quinoline-based SGI-1027 as inhibitors of DNA methylation. ChemMedChem 2014,9(3),590-601
[DOI: 10.1002/cmdc.201300420]
Valente S.; Liu Y.; Schnekenburger M.; Zwergel C.; Cosconati S.; Gros C.; Tardugno M.; Labella D.; Florean C.; Minden S.; Hashimoto H.; Chang Y.; Zhang X.; Kirsch G.; Novellino E.; Arimondo P.B.; Miele E.; Ferretti E.; Gulino A.; Diederich M.; Cheng X.; Mai A.; Selective non-nucleoside inhibitors of human DNA methyltransferases active in cancer including in cancer stem cells. J Med Chem 2014,57(3),701-713
[DOI: 10.1021/jm4012627]
Erdmann A.; Menon Y.; Gros C.; Masson V.; Aussagues Y.; Ausseil F.; Novosad N.; Schambel P.; Baltas M.; Arimondo P.B.; Identification and optimization of hydrazone-gallate derivatives as specific inhibitors of DNA methyltransferase 3A. Future Med Chem 2016,8(4),373-380
[DOI: 10.4155/fmc.15.192]
Castellano S.; Kuck D.; Viviano M.; Yoo J.; López-Vallejo F.; Conti P.; Tamborini L.; Pinto A.; Medina-Franco J.L.; Sbardella G.; Synthesis and biochemical evaluation of δ(2)-isoxazoline derivatives as DNA methyltransferase 1 inhibitors. J Med Chem 2011,54(21),7663-7677
[DOI: 10.1021/jm2010404]
Gros C.; Fleury L.; Nahoum V.; Faux C.; Valente S.; Labella D.; Cantagrel F.; Rilova E.; Bouhlel M.A.; David-Cordonnier M.H.; Dufau I.; Ausseil F.; Mai A.; Mourey L.; Lacroix L.; Arimondo P.B.; New insights on the mechanism of quinoline-based DNA Methyltransferase inhibitors. J Biol Chem 2015,290(10),6293-6302
[DOI: 10.1074/jbc.M114.594671]
Halby L.; Menon Y.; Rilova E.; Pechalrieu D.; Masson V.; Faux C.; Bouhlel M.A.; David-Cordonnier M.H.; Novosad N.; Aussagues Y.; Samson A.; Lacroix L.; Ausseil F.; Fleury L.; Guianvarc’h D.; Ferroud C.; Arimondo P.B.; Rational design of bisubstrate-type analogues as inhibitors of DNA methyltransferases in cancer Cells. J Med Chem 2017,60(11),4665-4679
[DOI: 10.1021/acs.jmedchem.7b00176]
Siedlecki P.; Boy R.G.; Musch T.; Brueckner B.; Suhai S.; Lyko F.; Zielenkiewicz P.; Discovery of two novel, small-molecule inhibitors of DNA methylation. J Med Chem 2006,49(2),678-683
[DOI: 10.1021/jm050844z]
Ceccaldi A.; Rajavelu A.; Champion C.; Rampon C.; Jurkowska R.; Jankevicius G.; Sénamaud-Beaufort C.; Ponger L.; Gagey N.; Dali Ali H.; Tost J.; Vriz S.; Ros S.; Dauzonne D.; Jeltsch A.; Guianvarc’h D.; Arimondo P.B.; C5-DNA methyltransferase inhibitors: From screening to effects on zebrafish embryo development. ChemBioChem 2011,12(9),1337-1345
[DOI: 10.1002/cbic.201100130]
Ceccaldi A.; Rajavelu A.; Ragozin S.; Sénamaud-Beaufort C.; Bashtrykov P.; Testa N.; Dali-Ali H.; Maulay-Bailly C.; Amand S.; Guianvarc’h D.; Jeltsch A.; Arimondo P.B.; Identification of novel inhibitors of DNA methylation by screening of a chemical library. ACS Chem Biol 2013,8(3),543-548
[DOI: 10.1021/cb300565z]
Fagan R.L.; Cryderman D.E.; Kopelovich L.; Wallrath L.L.; Brenner C.; Laccaic acid A is a direct, DNA-competitive inhibitor of DNA methyltransferase 1. J Biol Chem 2013,288(33),23858-23867
[DOI: 10.1074/jbc.M113.480517]
Kilgore J.A.; Du X.; Melito L.; Wei S.; Wang C.; Chin H.G.; Posner B.; Pradhan S.; Ready J.M.; Williams N.S.; Identification of DNMT1 selective antagonists using a novel scintillation proximity assay. J Biol Chem 2013,288(27),19673-19684
[DOI: 10.1074/jbc.M112.443895]
Garella D.; Atlante S.; Borretto E.; Cocco M.; Giorgis M.; Costale A.; Stevanato L.; Miglio G.; Cencioni C.; Fernández-de Gortari E.; Medina-Franco J.L.; Spallotta F.; Gaetano C.; Bertinaria M.; Design and synthesis of N -benzoyl amino acid derivatives as DNA methylation inhibitors. Chem Biol Drug Des 2016,88(5),664-676
[DOI: 10.1111/cbdd.12794]
Rondelet G.; Fleury L.; Faux C.; Masson V.; Dubois J.; Arimondo P.B.; Willems L.; Wouters J.; Inhibition studies of DNA methyltransferases by maleimide derivatives of RG108 as non-nucleoside inhibitors. Future Med Chem 2017,9(13),1465-1481
[DOI: 10.4155/fmc-2017-0074]
Saldívar-González F.I.; Gómez-García A.; Chávez-Ponce de León D.E.; Sánchez-Cruz N.; Ruiz-Rios J.; Pilón-Jiménez B.A.; Medina-Franco J.L.; Inhibitors of DNA methyltransferases from natural sources: A computational perspective. Front Pharmacol 2018,9,1144
[DOI: 10.3389/fphar.2018.01144]
San José-Enériz E.; Agirre X.; Rabal O.; Vilas-Zornoza A.; Sanchez-Arias J.A.; Miranda E.; Ugarte A.; Roa S.; Paiva B.; Estella-Hermoso de Mendoza A.; Alvarez R.M.; Casares N.; Segura V.; Martín-Subero J.I.; Ogi F.X.; Soule P.; Santiveri C.M.; Campos-Olivas R.; Castellano G.; de Barrena M.G.F.; Rodriguez-Madoz J.R.; García-Barchino M.J.; Lasarte J.J.; Avila M.A.; Martinez-Climent J.A.; Oyarzabal J.; Prosper F.; Discovery of first-in-class reversible dual small molecule inhibitors against G9a and DNMTs in hematological malignancies. Nat Commun 2017,8(1),15424
[DOI: 10.1038/ncomms15424]
Leroy M.; Mélin L.; LaPlante S.R.; Medina-Franco J.L.; Gagnon A.; Synthesis of NSC 106084 and NSC 14778 and evaluation of their DNMT inhibitory activity. Bioorg Med Chem Lett 2019,29(6),826-831
[DOI: 10.1016/j.bmcl.2019.01.022]
Grants
82273793/National Natural Science Foundation of China
LJKZZ20220108/Key Research Project of the Department of Education of Liaoning Province
2019M661132/China Postdoctoral Science Foundation
LJKQZ20222351/foundation of Liaoning Provincial Department of Education