Revealing intrinsic domains and fluctuations of moiré magnetism by a wide-field quantum microscope.

Mengqi Huang, Zeliang Sun, Gerald Yan, Hongchao Xie, Nishkarsh Agarwal, Gaihua Ye, Suk Hyun Sung, Hanyi Lu, Jingcheng Zhou, Shaohua Yan, Shangjie Tian, Hechang Lei, Robert Hovden, Rui He, Hailong Wang, Liuyan Zhao, Chunhui Rita Du
Author Information
  1. Mengqi Huang: Department of Physics, University of California, San Diego, La Jolla, CA, 92093, USA.
  2. Zeliang Sun: Department of Physics, University of Michigan, Ann Arbor, MI, 48109, USA.
  3. Gerald Yan: Department of Physics, University of California, San Diego, La Jolla, CA, 92093, USA.
  4. Hongchao Xie: Department of Physics, University of Michigan, Ann Arbor, MI, 48109, USA. ORCID
  5. Nishkarsh Agarwal: Department of Material Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA. ORCID
  6. Gaihua Ye: Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, USA.
  7. Suk Hyun Sung: Department of Material Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA. ORCID
  8. Hanyi Lu: Department of Physics, University of California, San Diego, La Jolla, CA, 92093, USA.
  9. Jingcheng Zhou: Department of Physics, University of California, San Diego, La Jolla, CA, 92093, USA. ORCID
  10. Shaohua Yan: Laboratory for Neutron Scattering, and Beijing Key Laboratory of Optoelectronic Functional Materials MicroNano Devices, Department of Physics, Renmin University of China, Beijing, 100872, China.
  11. Shangjie Tian: Laboratory for Neutron Scattering, and Beijing Key Laboratory of Optoelectronic Functional Materials MicroNano Devices, Department of Physics, Renmin University of China, Beijing, 100872, China. ORCID
  12. Hechang Lei: Laboratory for Neutron Scattering, and Beijing Key Laboratory of Optoelectronic Functional Materials MicroNano Devices, Department of Physics, Renmin University of China, Beijing, 100872, China. ORCID
  13. Robert Hovden: Department of Material Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA. ORCID
  14. Rui He: Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, USA. ORCID
  15. Hailong Wang: School of Physics, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
  16. Liuyan Zhao: Department of Physics, University of Michigan, Ann Arbor, MI, 48109, USA. lyzhao@umich.edu. ORCID
  17. Chunhui Rita Du: Department of Physics, University of California, San Diego, La Jolla, CA, 92093, USA. c1du@physics.ucsd.edu. ORCID

Abstract

Moiré magnetism featured by stacking engineered atomic registry and lattice interactions has recently emerged as an appealing quantum state of matter at the forefront of condensed matter physics research. Nanoscale imaging of moiré magnets is highly desirable and serves as a prerequisite to investigate a broad range of intriguing physics underlying the interplay between topology, electronic correlations, and unconventional nanomagnetism. Here we report spin defect-based wide-field imaging of magnetic domains and spin fluctuations in twisted double trilayer (tDT) chromium triiodide CrI. We explicitly show that intrinsic moiré domains of opposite magnetizations appear over arrays of moiré supercells in low-twist-angle tDT CrI. In contrast, spin fluctuations measured in tDT CrI manifest little spatial variations on the same mesoscopic length scale due to the dominant driving force of intralayer exchange interaction. Our results enrich the current understanding of exotic magnetic phases sustained by moiré magnetism and highlight the opportunities provided by quantum spin sensors in probing microscopic spin related phenomena on two-dimensional flatland.

References

  1. Xu, Y. et al. Coexisting ferromagnetic–antiferromagnetic state in twisted bilayer CrI. Nat. Nanotechnol. 17, 143–147 (2022). [DOI: 10.1038/s41565-021-01014-y]
  2. Song, T. et al. Direct visualization of magnetic domains and moiré magnetism in twisted 2D magnets. Science 374, 1140–1144 (2021). [DOI: 10.1126/science.abj7478]
  3. Xie, H. et al. Twist engineering of the two-dimensional magnetism in double bilayer chromium triiodide homostructures. Nat. Phys. 18, 30–36 (2022). [DOI: 10.1038/s41567-021-01408-8]
  4. Cheng, G. et al. Electrically tunable moiré magnetism in twisted double bilayer antiferromagnets. Nat. Electron. 6, 434–442 (2023). [DOI: 10.1038/s41928-023-00978-0]
  5. Xie, H. et al. Evidence of non-collinear spin texture in magnetic moiré superlattices. Nat. Phys. https://doi.org/10.1038/s41567-023-02061-z (2023).
  6. Tong, Q., Liu, F., Xiao, J. & Yao, W. Skyrmions in the moiré of van der Waals 2D magnets. Nano Lett. 18, 7194–7199 (2018). [DOI: 10.1021/acs.nanolett.8b03315]
  7. Akram, M. et al. Moiré skyrmions and chiral magnetic phases in twisted CrX (X = I, Br, and Cl) bilayers. Nano Lett. 21, 6633–6639 (2021). [DOI: 10.1021/acs.nanolett.1c02096]
  8. Sivadas, N. et al. Stacking-dependent magnetism in bilayer CrI. Nano Lett. 18, 7658–7664 (2018). [DOI: 10.1021/acs.nanolett.8b03321]
  9. Wang, C., Gao, Y., Lv, H., Xu, X. & Xiao, D. Stacking domain wall magnons in twisted van der Waals magnets. Phys. Rev. Lett. 125, 247201 (2020). [DOI: 10.1103/PhysRevLett.125.247201]
  10. Hejazi, K., Luo, Z.-X. & Balents, L. Noncollinear phases in moiré magnets. Proc. Natl Acad. Sci. 117, 10721–10726 (2020). [DOI: 10.1073/pnas.2000347117]
  11. Degen, C. L., Reinhard, F. & Cappellaro, P. Quantum sensing. Rev. Mod. Phys. 89, 035002 (2017). [DOI: 10.1103/RevModPhys.89.035002]
  12. Rondin, L. et al. Magnetometry with nitrogen-vacancy defects in diamond. Rep. Prog. Phys. 77, 056503 (2014). [DOI: 10.1088/0034-4885/77/5/056503]
  13. Doherty, M. W. et al. The nitrogen-vacancy colour centre in diamond. Phys. Rep. 528, 1–45 (2013). [DOI: 10.1016/j.physrep.2013.02.001]
  14. Andrei, E. Y. et al. The marvels of moiré materials. Nat. Rev. Mater. 6, 201–206 (2021). [DOI: 10.1038/s41578-021-00284-1]
  15. Kennes, D. M. et al. Moiré heterostructures as a condensed-matter quantum simulator. Nat. Phys. 17, 155–163 (2021). [DOI: 10.1038/s41567-020-01154-3]
  16. Tran, K. et al. Evidence for moiré excitons in van der Waals heterostructures. Nature 567, 71–75 (2019). [DOI: 10.1038/s41586-019-0975-z]
  17. Huang, D., Choi, J., Shih, C.-K. & Li, X. Excitons in semiconductor moiré superlattices. Nat. Nanotechnol. 17, 227–238 (2022). [DOI: 10.1038/s41565-021-01068-y]
  18. Jin, C. et al. Observation of moiré excitons in WSe/WS heterostructure superlattices. Nature 567, 76–80 (2019). [DOI: 10.1038/s41586-019-0976-y]
  19. Seyler, K. L. et al. Signatures of moiré-trapped valley excitons in MoSe/WSe heterobilayers. Nature 567, 66–70 (2019). [DOI: 10.1038/s41586-019-0957-1]
  20. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018). [DOI: 10.1038/nature26160]
  21. Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018). [DOI: 10.1038/nature26154]
  22. Li, T. et al. Quantum anomalous Hall effect from intertwined moiré bands. Nature 600, 641–646 (2021). [DOI: 10.1038/s41586-021-04171-1]
  23. Lenz, T. et al. Imaging topological spin structures using light-polarization and magnetic microscopy. Phys. Rev. Appl. 15, 024040 (2021). [DOI: 10.1103/PhysRevApplied.15.024040]
  24. Tetienne, J.-P. et al. Quantum imaging of current flow in graphene. Sci. Adv. 3, e1602429 (2017). [DOI: 10.1126/sciadv.1602429]
  25. Ku, M. J. H. et al. Imaging viscous flow of the Dirac fluid in graphene. Nature 583, 537–541 (2020). [DOI: 10.1038/s41586-020-2507-2]
  26. McLaughlin, N. J. et al. Quantum imaging of magnetic phase transitions and spin fluctuations in intrinsic magnetic topological nanoflakes. Nano Lett. 22, 5810–5817 (2022). [DOI: 10.1021/acs.nanolett.2c01390]
  27. Kim, K. et al. van der Waals heterostructures with high accuracy rotational alignment. Nano Lett. 16, 1989–1995 (2016). [DOI: 10.1021/acs.nanolett.5b05263]
  28. Sung, S. H. et al. Torsional periodic lattice distortions and diffraction of twisted 2D materials. Nat. Commun. 13, 7826 (2022). [DOI: 10.1038/s41467-022-35477-x]
  29. Pham, L. M. et al. NMR technique for determining the depth of shallow nitrogen-vacancy centers in diamond. Phys. Rev. B 93, 045425 (2016). [DOI: 10.1103/PhysRevB.93.045425]
  30. Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017). [DOI: 10.1038/nature22391]
  31. Thiel, L. et al. Probing magnetism in 2D materials at the nanoscale with single-spin microscopy. Science 364, 973–976 (2019). [DOI: 10.1126/science.aav6926]
  32. Andersen, T. I. et al. Electron-phonon instability in graphene revealed by global and local noise probes. Science 364, 154–157 (2019). [DOI: 10.1126/science.aaw2104]
  33. Kolkowitz, S. et al. Probing Johnson noise and ballistic transport in normal metals with a single-spin qubit. Science 347, 1129–1132 (2015). [DOI: 10.1126/science.aaa4298]
  34. McCullian, B. A. et al. Broadband multi-magnon relaxometry using a quantum spin sensor for high frequency ferromagnetic dynamics sensing. Nat. Commun. 11, 5229 (2020). [DOI: 10.1038/s41467-020-19121-0]
  35. Finco, A. et al. Imaging non-collinear antiferromagnetic textures via single spin relaxometry. Nat. Commun. 12, 767 (2021). [DOI: 10.1038/s41467-021-20995-x]
  36. Du, C. et al. Control and local measurement of the spin chemical potential in a magnetic insulator. Science 357, 195–198 (2017). [DOI: 10.1126/science.aak9611]
  37. Ariyaratne, A., Bluvstein, D., Myers, B. A. & Jayich, A. C. B. Nanoscale electrical conductivity imaging using a nitrogen-vacancy center in diamond. Nat. Commun. 9, 2406 (2018). [DOI: 10.1038/s41467-018-04798-1]
  38. van der Sar, T., Casola, F., Walsworth, R. & Yacoby, A. Nanometre-scale probing of spin waves using single electron spins. Nat. Commun. 6, 7886 (2015). [DOI: 10.1038/ncomms8886]
  39. Flebus, B. & Tserkovnyak, Y. Quantum-impurity relaxometry of magnetization dynamics. Phys. Rev. Lett. 121, 187204 (2018). [DOI: 10.1103/PhysRevLett.121.187204]
  40. Huang, M. et al. Wide field imaging of van der Waals ferromagnet FeGeTe by spin defects in hexagonal boron nitride. Nat. Commun. 13, 5369 (2022). [DOI: 10.1038/s41467-022-33016-2]
  41. Chatterjee, S., Rodriguez-Nieva, J. F. & Demler, E. Diagnosing phases of magnetic insulators via noise magnetometry with spin qubits. Phys. Rev. B 99, 104425 (2019). [DOI: 10.1103/PhysRevB.99.104425]

Grants

  1. FA9550-20-1-0319/United States Department of Defense | United States Air Force | AFMC | Air Force Office of Scientific Research (AF Office of Scientific Research)
  2. FA9550-21-1-0125/United States Department of Defense | United States Air Force | AFMC | Air Force Office of Scientific Research (AF Office of Scientific Research)

Word Cloud

Created with Highcharts 10.0.0moiréspinmagnetismquantumdomainsfluctuationstDTCrImatterphysicsimagingwide-fieldmagneticintrinsicMoiréfeaturedstackingengineeredatomicregistrylatticeinteractionsrecentlyemergedappealingstateforefrontcondensedresearchNanoscalemagnetshighlydesirableservesprerequisiteinvestigatebroadrangeintriguingunderlyinginterplaytopologyelectroniccorrelationsunconventionalnanomagnetismreportdefect-basedtwisteddoubletrilayerchromiumtriiodideexplicitlyshowoppositemagnetizationsappeararrayssupercellslow-twist-anglecontrastmeasuredmanifestlittlespatialvariationsmesoscopiclengthscaleduedominantdrivingforceintralayerexchangeinteractionresultsenrichcurrentunderstandingexoticphasessustainedhighlightopportunitiesprovidedsensorsprobingmicroscopicrelatedphenomenatwo-dimensionalflatlandRevealingmicroscope

Similar Articles

Cited By (2)