Testing a computational model of causative overgeneralizations: Child judgment and production data from English, Hebrew, Hindi, Japanese and K'iche'.

Ben Ambridge, Laura Doherty, Ramya Maitreyee, Tomoko Tatsumi, Shira Zicherman, Pedro Mateo Pedro, Ayuno Kawakami, Amy Bidgood, Clifton Pye, Bhuvana Narasimhan, Inbal Arnon, Dani Bekman, Amir Efrati, Sindy Fabiola Can Pixabaj, Mario Marroquín Pelíz, Margarita Julajuj Mendoza, Soumitra Samanta, Seth Campbell, Stewart McCauley, Ruth Berman, Dipti Misra Sharma, Rukmini Bhaya Nair, Kumiko Fukumura
Author Information
  1. Ben Ambridge: University of Liverpool, Liverpool, UK. ORCID
  2. Laura Doherty: University of Liverpool, Liverpool, UK.
  3. Ramya Maitreyee: University of Liverpool, Liverpool, UK.
  4. Tomoko Tatsumi: Kobe University, Kobe, Japan. ORCID
  5. Shira Zicherman: Hebrew University of Jerusalem, Jerusalem, Israel.
  6. Pedro Mateo Pedro: Universidad del Valle de Guatemala, Guatemala City, Guatemala.
  7. Ayuno Kawakami: University of Liverpool, Liverpool, UK.
  8. Amy Bidgood: University of Salford, Salford, UK. ORCID
  9. Clifton Pye: University of Kansas, Lawrence, Kansas, USA.
  10. Bhuvana Narasimhan: University of Colorado, Boulder, Boulder, Colorado, USA.
  11. Inbal Arnon: Hebrew University of Jerusalem, Jerusalem, Israel.
  12. Dani Bekman: Hebrew University of Jerusalem, Jerusalem, Israel.
  13. Amir Efrati: Hebrew University of Jerusalem, Jerusalem, Israel.
  14. Sindy Fabiola Can Pixabaj: Universidad del Valle de Guatemala, Guatemala City, Guatemala.
  15. Mario Marroquín Pelíz: Universidad del Valle de Guatemala, Guatemala City, Guatemala.
  16. Margarita Julajuj Mendoza: Universidad del Valle de Guatemala, Guatemala City, Guatemala.
  17. Soumitra Samanta: University of Liverpool, Liverpool, UK.
  18. Seth Campbell: University of Calgary, Calgary, Canada.
  19. Stewart McCauley: University of Iowa, Iowa City, Iowa, USA.
  20. Ruth Berman: Tel Aviv University, Tel Aviv, Israel.
  21. Dipti Misra Sharma: Indian Institute of Information Technology, Hyderabad, India.
  22. Rukmini Bhaya Nair: Indian Institute of Technology, Delhi, India. ORCID
  23. Kumiko Fukumura: University of Stirling, Stirling, UK.

Abstract

How do language learners avoid the production of verb argument structure overgeneralization errors ( c.f. ), while retaining the ability to apply such generalizations productively when appropriate? This question has long been seen as one that is both particularly central to acquisition research and particularly challenging. Focussing on causative overgeneralization errors of this type, a previous study reported a computational model that learns, on the basis of corpus data and human-derived verb-semantic-feature ratings, to predict adults' by-verb preferences for less- versus more-transparent causative forms (e.g., * vs ) across English, Hebrew, Hindi, Japanese and K'iche Mayan. Here, we tested the ability of this model (and an expanded version with multiple hidden layers) to explain binary grammaticality judgment data from children aged 4;0-5;0, and elicited-production data from children aged 4;0-5;0 and 5;6-6;6 ( =48 per language). In general, the model successfully simulated both children's judgment and production data, with correlations of =0.5-0.6 and =0.75-0.85, respectively, and also generalized to unseen verbs. Importantly, learners of all five languages showed some evidence of making the types of overgeneralization errors - in both judgments and production - previously observed in naturalistic studies of English (e.g., ). Together with previous findings, the present study demonstrates that a simple learning model can explain (a) adults' continuous judgment data, (b) children's binary judgment data and (c) children's production data (with no training of these datasets), and therefore constitutes a plausible mechanistic account of the acquisition of verbs' argument structure restrictions.

Keywords

References

  1. Cognition. 2016 Aug;153:124-39 [PMID: 27183399]
  2. Cognition. 1991 Dec;41(1-3):153-95 [PMID: 1790653]
  3. Cogn Sci. 2009 Sep;33(7):1301-16 [PMID: 21585506]
  4. Cognition. 2012 May;123(2):260-79 [PMID: 22325040]
  5. Cogn Sci. 2017 Mar;41(2):383-415 [PMID: 26901251]
  6. Cogn Psychol. 2014 Sep;73:41-71 [PMID: 24956024]
  7. PLoS One. 2015 Apr 28;10(4):e0123723 [PMID: 25919003]
  8. Behav Res Methods. 2019 Feb;51(1):195-203 [PMID: 30734206]
  9. Cognition. 2017 Nov;168:276-293 [PMID: 28756351]
  10. PLoS One. 2014 Oct 15;9(10):e110009 [PMID: 25333407]
  11. Child Dev. 1999 Nov-Dec;70(6):1325-37 [PMID: 10621959]
  12. Behav Res Methods. 2013 Dec;45(4):1191-207 [PMID: 23404613]
  13. Patterns (N Y). 2021 May 14;2(5):100244 [PMID: 34036289]
  14. Brain Lang. 2001 Jun;77(3):305-20 [PMID: 11386699]
  15. Cogn Psychol. 2008 May;56(3):165-209 [PMID: 17662707]
  16. J Child Lang. 2002 Nov;29(4):759-81 [PMID: 12471972]
  17. J Child Lang. 2016 Nov;43(6):1245-76 [PMID: 26568152]
  18. Cogn Psychol. 2017 Nov;98:22-44 [PMID: 28830015]
  19. Cogn Sci. 2017 May;41 Suppl 5:1155-1167 [PMID: 26946380]
  20. Cognition. 2020 Sep;202:104310 [PMID: 32623135]
  21. Cogn Sci. 2008 Jul 8;32(5):789-834 [PMID: 21635354]
  22. Front Psychol. 2016 Nov 25;7:1832 [PMID: 27933012]
  23. Cogn Sci. 2010 Aug;34(6):972-1016 [PMID: 21564242]
  24. Wiley Interdiscip Rev Cogn Sci. 2013 Jan;4(1):47-62 [PMID: 26304174]
  25. J Child Lang. 2010 Jun;37(3):607-42 [PMID: 20367896]
  26. Cogn Sci. 2013 Apr;37(3):508-43 [PMID: 23252958]
  27. PLoS One. 2014 May 15;9(5):e97634 [PMID: 24830412]
  28. Cognition. 2008 Jan;106(1):87-129 [PMID: 17316595]

Word Cloud

Created with Highcharts 10.0.0dataproductionmodeljudgmentcausativeEnglishlanguageovergeneralizationerrorsacquisitionHebrewHindiJapanesechildren'slearnersverbargumentstructurecabilityparticularlypreviousstudycomputationaladults'egexplainbinarychildrenaged40-506=0-learningavoidfretainingapplygeneralizationsproductivelyappropriate?questionlongseenonecentralresearchchallengingFocussingtypereportedlearnsbasiscorpushuman-derivedverb-semantic-featureratingspredictby-verbpreferencesless-versusmore-transparentforms*vsacrossK'icheMayantestedexpandedversionmultiplehiddenlayersgrammaticalityelicited-production56-6=48pergeneralsuccessfullysimulatedcorrelations5-075-085respectivelyalsogeneralizedunseenverbsImportantlyfivelanguagesshowedevidencemakingtypesjudgmentspreviouslyobservednaturalisticstudiesTogetherfindingspresentdemonstratessimplecancontinuousbtrainingdatasetsthereforeconstitutesplausiblemechanisticaccountverbs'restrictionsTestingovergeneralizations:ChildK'iche'K’iche'childdiscriminativesemantics

Similar Articles

Cited By