Biosynthesis of Quantum Dots and Their Therapeutic Applications in the Diagnosis and Treatment of Cancer and SARS-CoV-2.

Musa Moetasam Zorab, Navid Mohammadjani, Morahem Ashengroph, Mehran Alavi
Author Information
  1. Musa Moetasam Zorab: Department of Physics, University of Halabja, Kurdistan Region, Iraq. ORCID
  2. Navid Mohammadjani: Department of Biological Science, Faculty of Science, University of Kurdistan, Sanandaj, Kurdistan, Iran.
  3. Morahem Ashengroph: Department of Biological Science, Faculty of Science, University of Kurdistan, Sanandaj, Kurdistan, Iran. ORCID
  4. Mehran Alavi: Department of Biological Science, Faculty of Science, University of Kurdistan, Sanandaj, Kurdistan, Iran. ORCID

Abstract

Quantum dots (QDs) are semiconductor materials that range from 2 nm to 10 nm. These nanomaterials (NMs) are smaller and have more unique properties compared to conventional nanoparticles (NPs). One of the unique properties of QDs is their special optoelectronic properties, making it possible to apply these NMs in bioimaging. Different size and shape QDs, which are used in various fields such as bioimaging, biosensing, cancer therapy, and drug delivery, have so far been produced by chemical methods. However, chemical synthesis provides expensive routes and causes and health issues. Therefore, various biological systems such as bacteria, fungi, yeasts, algae, and plants are considered as potent eco-friendly green nanofactories for the biosynthesis of QDs, which are safe. The review aims to provide a descriptive overview of the agents for the of and their biomedical applications for the diagnosis and treatment of cancer and SARS-CoV-2.

Keywords

References

  1. Molecules. 2021 Dec 27;27(1): [PMID: 35011376]
  2. ACS Sens. 2022 May 27;7(5):1269-1299 [PMID: 35486955]
  3. Langmuir. 2021 Aug 24;37(33):10223-10232 [PMID: 34379978]
  4. Nanoscale Res Lett. 2014 Dec;9(1):2407 [PMID: 26088983]
  5. Int J Mol Sci. 2021 Nov 19;22(22): [PMID: 34830396]
  6. J Funct Biomater. 2021 Dec 16;12(4): [PMID: 34940554]
  7. J Biotechnol. 2011 May 20;153(3-4):125-32 [PMID: 21458508]
  8. Enzyme Microb Technol. 2017 Jan;96:96-102 [PMID: 27871390]
  9. Nanoscale Res Lett. 2012 Aug 28;7(1):480 [PMID: 22929008]
  10. J Chem Technol Biotechnol. 2022 Jul;97(7):1640-1654 [PMID: 35463806]
  11. Acc Chem Res. 2021 Jul 20;54(14):2991-3002 [PMID: 34180662]
  12. Chem Rev. 2015 Nov 11;115(21):11669-717 [PMID: 26446443]
  13. RSC Adv. 2020 Mar 3;10(16):9172-9181 [PMID: 35497204]
  14. Front Microbiol. 2018 Feb 20;9:234 [PMID: 29515535]
  15. Talanta. 2021 Apr 1;225:122064 [PMID: 33592783]
  16. Front Microbiol. 2019 Aug 13;10:1866 [PMID: 31456780]
  17. Adv Mater. 2022 Jul;34(30):e2201085 [PMID: 35288985]
  18. Colloids Surf B Biointerfaces. 2014 May 1;117:199-205 [PMID: 24632392]
  19. Mikrochim Acta. 2021 Sep 2;188(10):316 [PMID: 34476615]
  20. Materials (Basel). 2022 Jan 10;15(2): [PMID: 35057223]
  21. Spectrochim Acta A Mol Biomol Spectrosc. 2013 Apr;106:41-7 [PMID: 23357677]
  22. ACS Appl Mater Interfaces. 2021 Jan 13;13(1):1277-1287 [PMID: 33393300]
  23. Biosens Bioelectron. 2022 Apr 15;202:113974 [PMID: 35032920]
  24. Nano Lett. 2022 Feb 23;22(4):1778-1785 [PMID: 35156830]
  25. Biochem Biophys Rep. 2021 Mar 14;26:100962 [PMID: 33763604]
  26. Anal Chim Acta. 2020 May 1;1109:148-157 [PMID: 32252898]
  27. Int Microbiol. 2021 Jan;24(1):103-114 [PMID: 33124680]
  28. ACS Omega. 2021 Nov 23;6(48):33100-33110 [PMID: 34901661]
  29. Sci Rep. 2016 Feb 09;6:20480 [PMID: 26857581]
  30. Recent Pat Nanotechnol. 2023;17(1):59-67 [PMID: 34825647]
  31. Mater Today (Kidlington). 2020 Jul-Aug;37:112-125 [PMID: 33093794]
  32. ACS Appl Mater Interfaces. 2019 Mar 20;11(11):10442-10451 [PMID: 30785253]
  33. J Nanobiotechnology. 2022 Jan 6;20(1):22 [PMID: 34991619]
  34. J Microbiol Immunol Infect. 2020 Jun;53(3):436-443 [PMID: 32307245]
  35. World J Microbiol Biotechnol. 2020 Sep 5;36(10):147 [PMID: 32888099]
  36. Expert Rev Anti Infect Ther. 2021 Jan;19(1):35-44 [PMID: 32791928]
  37. Eur J Pharmacol. 2022 Feb 15;917:174751 [PMID: 35021110]
  38. RSC Adv. 2019 Feb 25;9(12):6460-6481 [PMID: 35518468]
  39. Biochem Biophys Res Commun. 2021 Mar 12;544:60-64 [PMID: 33516883]
  40. Arch Pharm (Weinheim). 2022 Dec;355(12):e2200299 [PMID: 36058643]
  41. Nanomaterials (Basel). 2019 Dec 02;9(12): [PMID: 31810256]
  42. Biomedicines. 2020 Dec 07;8(12): [PMID: 33297444]
  43. Acta Biomater. 2019 Aug;94:44-63 [PMID: 31082570]
  44. IET Nanobiotechnol. 2019 Dec;13(9):962-966 [PMID: 31811767]
  45. Drug Metab Pers Ther. 2019 Feb 1;34(1): [PMID: 30707682]
  46. Guang Pu Xue Yu Guang Pu Fen Xi. 2012 Apr;32(4):1090-3 [PMID: 22715791]
  47. Nat Nanotechnol. 2013 Jan;8(1):57-60 [PMID: 23263722]
  48. Nanomaterials (Basel). 2021 May 21;11(6): [PMID: 34063843]
  49. Expert Opin Drug Discov. 2022 Mar;17(3):225-230 [PMID: 34817309]
  50. ACS Appl Bio Mater. 2021 Mar 15;4(3):2839-2849 [PMID: 35014323]
  51. Biosens Bioelectron. 2022 Feb 15;198:113810 [PMID: 34840014]
  52. RSC Adv. 2021 Jun 21;11(35):21813-21823 [PMID: 35478832]
  53. Sao Paulo Med J. 2022 May-Jun;140(3):372-377 [PMID: 35507992]
  54. Sens Actuators B Chem. 2021 Jun 15;337:129786 [PMID: 33753963]

Word Cloud

Created with Highcharts 10.0.0QDsQuantumpropertiesSARS-CoV-2dotsnmNMsuniquebioimagingvariouscancertherapychemicalsynthesisCancersemiconductormaterialsrange210nanomaterialssmallercomparedconventionalnanoparticlesNPsOnespecialoptoelectronicmakingpossibleapplyDifferentsizeshapeusedfieldsbiosensingdrugdeliveryfarproducedmethodsHoweverprovidesexpensiveroutescauseshealthissuesThereforebiologicalsystemsbacteriafungiyeastsalgaeplantsconsideredpotenteco-friendlygreennanofactoriesbiosynthesissafereviewaimsprovidedescriptiveoverviewagentsbiomedicalapplicationsdiagnosistreatmentBiosynthesisDotsTherapeuticApplicationsDiagnosisTreatmentBiologicalMicroorganisms

Similar Articles

Cited By