Multidimensional Internet Use, Social Participation, and Depression Among Middle-Aged and Elderly Chinese Individuals: Nationwide Cross-Sectional Study.

Xiwang Du, Jiazhi Liao, Qing Ye, Hong Wu
Author Information
  1. Xiwang Du: Taikang Tongji (Wuhan) Hospital, Wuhan, China. ORCID
  2. Jiazhi Liao: Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. ORCID
  3. Qing Ye: Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. ORCID
  4. Hong Wu: School of Medicine and Health Management, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. ORCID

Abstract

BACKGROUND: There is growing evidence that the internet has beneficial effects on the mental health of middle-aged and older people (≥45 years), but the evidence is inconclusive, and the underlying mechanisms are less known.
OBJECTIVE: This study aims to explore the relationship between multidimensional (devices, frequency, and purpose) internet use and depression in middle-aged and elderly Chinese, as well as the mediating effect of social participation. Moreover, this study will explore the moderating effect of the regional informatization development level (RIDL) on the relationships between individual internet use, social participation, and depression.
METHODS: Data on 17,676 participants aged 45 years or older were obtained from the China Health and Retirement Longitudinal Study (CHARLS) 2018 data set. The 10-item Center for Epidemiologic Studies Depression Scale (CES-D-10) was used to identify the presence of depression. Logistic regression was used to explore the relationship between each dimension of internet use and depression. Multiple linear regression was used to explore the mediating effect of social participation and the moderating effect of the RIDL.
RESULTS: The results showed that 28.33% (5008/17,676) of the total population had depression. In terms of regional subgroups, respondents living in the western region exhibited the highest proportion of depression (2041/5884, 34.69%). Internet use was negatively associated with depression (odds ratio 0.613, 95% CI 0.542-0.692; P<.001). Various dimensions of internet use positively contributed to individual social participation and reduced individual depression (devices: β=-.170, 95% CI -0.209 to -0.127; frequency: β=-.065, 95% CI -0.081 to -0.047; and purpose: β=-.043, 95% CI -0.053 to -0.031). In addition, the RIDL weakened the relationship between individual-level internet use and social participation (internet use: F=7.55, P<.001; devices: F=5.23, P=.005; frequency: F=6.62, P=.001; and purpose: F=6.80, P=.001), and negatively moderated the relationship between the frequency of internet use and depression (frequency: F=3.51, P=.03).
CONCLUSIONS: This study found that different dimensions of internet use are associated with lower levels of depression. Social participation partially mediates the association between multidimensional internet use and depression in the eastern, central, and western regions, respectively. Additionally, the RIDL helps individuals further their internet use and social participation, reducing the impact of depression. However, this effect weakens sequentially from the western region to the central region and then to the eastern region.

Keywords

References

  1. Lancet. 2018 Nov 24;392(10161):2299-2312 [PMID: 30396512]
  2. Psychiatry Clin Neurosci. 2018 Jul;72(7):531-539 [PMID: 29652105]
  3. Int J Geriatr Psychiatry. 2006 Apr;21(4):333-6 [PMID: 16570325]
  4. Front Psychol. 2021 Sep 21;12:729790 [PMID: 34621224]
  5. J Aging Health. 2020 Jan-Feb;32(1):33-41 [PMID: 30261796]
  6. J Affect Disord. 2023 Feb 15;323:514-523 [PMID: 36496102]
  7. Int J Environ Res Public Health. 2021 Dec 23;19(1): [PMID: 35010361]
  8. Nat Rev Immunol. 2016 Jan;16(1):22-34 [PMID: 26711676]
  9. Lancet. 2015 Feb 14;385(9968):640-648 [PMID: 25468152]
  10. J Appl Gerontol. 2017 Jan;36(1):3-28 [PMID: 26084479]
  11. Gerontologist. 2019 Jan 9;59(1):1-5 [PMID: 30629258]
  12. BMJ Open. 2018 Dec 9;8(12):e021528 [PMID: 30530575]
  13. BMC Public Health. 2018 Jul 1;18(1):779 [PMID: 29960595]
  14. J Gerontol B Psychol Sci Soc Sci. 2014 Sep;69(5):763-71 [PMID: 24671896]
  15. Risk Manag Healthc Policy. 2021 Nov 23;14:4697-4708 [PMID: 34866945]
  16. J Aging Health. 2020 Aug-Sep;32(7-8):530-542 [PMID: 30873892]
  17. J Med Internet Res. 2019 Feb 13;21(2):e11694 [PMID: 30758292]
  18. J Med Internet Res. 2013 Feb 28;15(2):e39 [PMID: 23448864]
  19. J Affect Disord. 2020 Aug 1;273:280-290 [PMID: 32421614]
  20. Cyberpsychol Behav. 2008 Apr;11(2):208-11 [PMID: 18422415]
  21. Soc Networks. 2022 Jul;70:393-402 [PMID: 35665241]
  22. J Affect Disord. 2022 Dec 15;319:370-376 [PMID: 36167244]
  23. BMC Med Inform Decis Mak. 2021 Sep 3;21(1):257 [PMID: 34479566]
  24. Lancet. 2018 Apr 7;391(10128):1357-1366 [PMID: 29477251]
  25. Aging Ment Health. 2018 Nov;22(11):1516-1524 [PMID: 28777010]
  26. Lancet Psychiatry. 2021 Nov;8(11):981-990 [PMID: 34559991]
  27. Br J Psychiatry. 2017 Feb;210(2):119-124 [PMID: 27908899]
  28. Soc Sci Med. 2019 Oct;238:112518 [PMID: 31473574]
  29. J Med Internet Res. 2017 Sep 11;19(9):e317 [PMID: 28893724]
  30. Internet Interv. 2022 Feb 07;27:100500 [PMID: 35242586]
  31. Geriatr Gerontol Int. 2018 Mar;18(3):421-427 [PMID: 29052928]
  32. Lancet Psychiatry. 2018 Mar;5(3):237-286 [PMID: 29482764]
  33. Front Public Health. 2021 Jul 16;9:673368 [PMID: 34336769]
  34. Int J Environ Res Public Health. 2019 Dec 31;17(1): [PMID: 31906068]
  35. Lancet. 2016 Apr 16;387(10028):1672-85 [PMID: 26454360]
  36. Front Psychiatry. 2021 Dec 07;12:739085 [PMID: 34950065]
  37. Educ Gerontol. 2015;41(10):695-709 [PMID: 26877583]
  38. Health Policy Plan. 2002 Mar;17(1):106-11 [PMID: 11861592]
  39. Soc Sci Med. 2014 Nov;120:224-32 [PMID: 25261616]
  40. Cyberpsychol Behav Soc Netw. 2016 Sep;19(9):551-6 [PMID: 27541746]
  41. J Appl Gerontol. 2021 Dec;40(12):1846-1855 [PMID: 32954905]
  42. Int J Environ Res Public Health. 2022 Oct 16;19(20): [PMID: 36293913]
  43. Psychiatr Clin North Am. 2018 Sep;41(3):485-503 [PMID: 30098660]
  44. Lancet. 2016 Jul 23;388(10042):314-316 [PMID: 27209145]
  45. BMC Geriatr. 2022 Apr 22;22(1):351 [PMID: 35448984]
  46. Health Promot Int. 2023 Aug 1;38(4): [PMID: 35022721]
  47. Int J Epidemiol. 2014 Feb;43(1):61-8 [PMID: 23243115]
  48. J Gerontol B Psychol Sci Soc Sci. 2017 Sep 01;72(5):846-855 [PMID: 28025280]
  49. BMC Public Health. 2017 Jan 31;17(1):138 [PMID: 28143462]

MeSH Term

Aged
Middle Aged
Humans
Internet Use
Cross-Sectional Studies
Depression
East Asian People
Longitudinal Studies
Social Participation

Word Cloud

Created with Highcharts 10.0.0depressioninternetuseparticipationsocial-0effectRIDLexplorerelationshipregion95%CI001P=middle-agedstudyChineseindividualusedwesternβ=-frequency:evidenceolderyearsmultidimensionalfrequencyelderlymediatingmoderatingregional676StudyDepressionregressionInternetnegativelyassociated0P<dimensionsdevices:purpose:F=6SocialeasterncentralBACKGROUND:growingbeneficialeffectsmentalhealthpeople≥45inconclusiveunderlyingmechanismslessknownOBJECTIVE:aimsdevicespurposewellMoreoverwillinformatizationdevelopmentlevelrelationshipsMETHODS:Data17participantsaged45obtainedChinaHealthRetirementLongitudinalCHARLS2018dataset10-itemCenterEpidemiologicStudiesScaleCES-D-10identifypresenceLogisticdimensionMultiplelinearRESULTS:resultsshowed2833%5008/17totalpopulationtermssubgroupsrespondentslivingexhibitedhighestproportion2041/58843469%oddsratio613542-0692Variouspositivelycontributedreduced170209127065081047043053031additionweakenedindividual-leveluse:F=755F=5230056280moderatedF=35103CONCLUSIONS:founddifferentlowerlevelspartiallymediatesassociationregionsrespectivelyAdditionallyhelpsindividualsreducingimpactHoweverweakenssequentiallyMultidimensionalUseParticipationAmongMiddle-AgedElderlyIndividuals:NationwideCross-Sectional

Similar Articles

Cited By