Ultrathin Serpentine Insulation Layer Architecture for Ultralow Power Gas Sensor.

Sung-Ho Kim, Min-Seung Jo, Kwang-Wook Choi, Jae-Young Yoo, Beom-Jun Kim, Jae-Soon Yang, Myung-Kun Chung, Tae-Soo Kim, Jun-Bo Yoon
Author Information
  1. Sung-Ho Kim: School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
  2. Min-Seung Jo: School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
  3. Kwang-Wook Choi: Samsung Electronics Co., Ltd., 1, Samsungjeonja-ro, Hwaseong-si, Gyeonggi-do, 18448, Republic of Korea.
  4. Jae-Young Yoo: Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, 60208, USA.
  5. Beom-Jun Kim: School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
  6. Jae-Soon Yang: School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
  7. Myung-Kun Chung: School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
  8. Tae-Soo Kim: School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
  9. Jun-Bo Yoon: School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea. ORCID

Abstract

Toxic gases have surreptitiously influenced the health and environment of contemporary society with their odorless/colorless characteristics. As a result, a pressing need for reliable and portable gas-sensing devices has continuously increased. However, with their negligence to efficiently microstructure their bulky supportive layer on which the sensing and heating materials are located, previous semiconductor metal-oxide gas sensors have been unable to fully enhance their power efficiency, a critical factor in power-stringent portable devices. Herein, an ultrathin insulation layer with a unique serpentine architecture is proposed for the development of a power-efficient gas sensor, consuming only 2.3 mW with an operating temperature of 300 °C (≈6% of the leading commercial product). Utilizing a mechanically robust serpentine design, this work presents a fully suspended standalone device with a supportive layer thickness of only ≈50 nm. The developed gas sensor shows excellent mechanical durability, operating over 10 000 on/off cycles and ≈2 years of life expectancy under continuous operation. The gas sensor detected carbon monoxide concentrations from 30 to 1 ppm with an average response time of ≈15 s and distinguishable sensitivity to 1 ppm (ΔR/R0 = 5%). The mass-producible fabrication and heating efficiency presented here provide an exemplary platform for diverse power-efficient-related devices.

Keywords

References

  1. J. Gong, Y. Li, Z. Hu, Z. Zhou, Y. Deng, J. Phys. Chem. C 2010, 114, 9970.
  2. D. J. Late, T. Doneux, M. Bougouma, Appl. Phys. Lett. 2014, 105, 233103.
  3. Z. Li, Y. Huang, S. Zhang, W. Chen, Z. Kuang, D. Ao, W. Liu, Y. Fu, J. Hazard. Mater. 2015, 300, 167.
  4. M. Wagh, L. Patil, T. Seth, D. Amalnerkar, Mater. Chem. Phys. 2004, 84, 228.
  5. R. Moos, Int. J. Appl. Ceram. Technol. 2005, 2, 401.
  6. R. Moos, R. Müller, C. Plog, A. Knezevic, H. Leye, E. Irion, T. Braun, K.-J. Marquardt, K. Binder, Sens. Actuators B Chem. 2002, 83, 181.
  7. J. Riegel, H. Neumann, H.-M. Wiedenmann, Solid State Ionics 2002, 152, 783.
  8. C. Love, H. Nazemi, E. El-Masri, K. Ambrose, M. S. Freund, A. Emadi, Sensors 2021, 21, 3423.
  9. T. Seesaard, N. Goel, M. Kumar, C. Wongchoosuk, Comput. Electron Agric. 2022, 193, 106673.
  10. X. Chen, M. Leishman, D. Bagnall, N. Nasiri, Nanomaterials 2021, 11, 1927.
  11. S.-Y. Yu, T.-W. Tung, H.-Y. Yang, G.-Y. Chen, C.-C. Shih, Y.-C. Lee, C.-C. Chen, H.-W. Zan, H.-F. Meng, C.-J. Lu, ACS Sens. 2019, 4, 1023.
  12. X. Zheng, H. Cheng, Sci. China Technol. Sci. 2019, 62, 209.
  13. K.-C. Hsu, T.-H. Fang, Y.-J. Hsiao, C.-A. Chan, Mater. Lett. 2020, 261, 127144.
  14. M. Kadosaki, Y. Sakai, I. Tamura, I. Matsubara, T. Itoh, Electron. Commun. Jpn. 2010, 93, 34.
  15. H. Nguyen, S. A. El-Safty, J. Phys. Chem. C 2011, 115, 8466.
  16. H. J. Cho, Y. H. Kim, S. Park, I. D. Kim, ChemNanoMat 2020, 6, 1014.
  17. Y.-J. Choi, I.-S. Hwang, J.-G. Park, K. J. Choi, J.-H. Park, J.-H. Lee, Nanotechnology 2008, 19, 095508.
  18. V. Kumar, S. Sen, K. Muthe, N. Gaur, S. Gupta, J. Yakhmi, Sens. Actuators B Chem. 2009, 138, 587.
  19. F. I. Ali, F. Awwad, Y. E. Greish, A. F. Abu-Hani, S. T. Mahmoud, Org. Electron. 2020, 76, 105486.
  20. M. Fleischer, H. Meixner, Sens. Actuators B Chem. 1997, 43, 1.
  21. H. Ji, W. Zeng, Y. Li, Nanoscale 2019, 11, 22664.
  22. C. Wang, L. Yin, L. Zhang, D. Xiang, R. Gao, Sensors 2010, 10, 2088.
  23. M. Prasad, Microelectron. Reliab. 2015, 55, 937.
  24. A. Rao, H. Long, A. Harley-Trochimczyk, T. Pham, A. Zettl, C. Carraro, R. Maboudian, ACS Appl. Mater. Interfaces 2017, 9, 2634.
  25. H. Long, A. Harley-Trochimczyk, T. He, T. Pham, Z. Tang, T. Shi, A. Zettl, W. Mickelson, C. Carraro, R. Maboudian, ACS Sens. 2016, 1, 339.
  26. Q. Zhou, A. Sussman, J. Chang, J. Dong, A. Zettl, W. Mickelson, Sens. Actuators, A 2015, 223, 67.
  27. L. Presmanes, Y. Thimont, I. El Younsi, A. Chapelle, F. Blanc, C. Talhi, C. Bonningue, A. Barnabé, P. Menini, P. Tailhades, Sensors 2017, 17, 1409.
  28. P. Bhattacharyya, IEEE Trans. Device Mater. Reliab. 2014, 14, 589.
  29. N. Kaur, M. Singh, E. Comini, Langmuir 2020, 36, 6326.
  30. M. Singh, N. Kaur, G. Drera, A. Casotto, L. Sangaletti, E. Comini, Adv. Funct. Mater. 2020, 30, 2003217.
  31. K. W. Choi, M. S. Jo, J. S. Lee, J. Y. Yoo, J. B. Yoon, Adv. Funct. Mater. 2020, 30, 2004448.
  32. K. J. Kim, W. P. King, Appl. Therm. Eng. 2009, 29, 1631.
  33. H. Park, J.-H. Kim, D. Vivod, S. Kim, A. Mirzaei, D. Zahn, C. Park, S. S. Kim, M. Halik, Nano Today 2021, 40, 101265.
  34. H. Park, J.-H. Kim, W.-S. Shin, A. Mirzaei, Y.-J. Kim, S. S. Kim, M. Halik, C. Park, Sens. Actuators B Chem. 2022, 372, 132657.
  35. C. Y. Jin, Z. Li, R. S. Williams, K.-C. Lee, I. Park, Nano Lett. 2011, 11, 4818.
  36. D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. Fan, K. E. Goodson, P. Keblinski, W. P. King, G. D. Mahan, A. Majumdar, Appl. Phys. Rev. 2014, 1, 011305.
  37. G. S. Doerk, C. Carraro, R. Maboudian, ACS Nano 2010, 4, 4908.
  38. J. P. Mathew, R. Patel, A. Borah, C. B. Maliakkal, T. Abhilash, M. M. Deshmukh, Nano Lett. 2015, 15, 7621.
  39. M. H. Seo, J. Y. Yoo, M. S. Jo, J. B. Yoon, Adv. Mater. 2020, 32, 1907082.
  40. J. Sun, R. Sokolovskij, E. Iervolino, Z. Liu, P. M. Sarro, G. Zhang, J. Microelectromech. Syst. 2019, 28, 997.
  41. M. C. Çakır, D. Çalışkan, B. Bütün, E. Özbay, Sensors 2016, 16, 1612.
  42. D. Xie, D. Chen, S. Peng, Y. Yang, L. Xu, F. Wu, IEEE Electron Device Lett. 2019, 40, 1178.
  43. K.-W. Choi, J.-S. Lee, M.-H. Seo, M.-S. Jo, J.-Y. Yoo, G. S. Sim, J.-B. Yoon, Sens. Actuators B Chem. 2019, 289, 153.
  44. T. Kim, W. Cho, B. Kim, J. Yeom, Y. M. Kwon, J. M. Baik, J. J. Kim, H. Shin, Small 2022, 2204078.
  45. M. Kang, I. Cho, J. Park, J. Jeong, K. Lee, B. Lee, D. Del Orbe Henriquez, K. Yoon, I. Park, ACS Sens. 2022, 7, 430.
  46. T.-J. Hsueh, C.-H. Peng, W.-S. Chen, Sens. Actuators B Chem. 2020, 304, 127319.
  47. C. Lu, S. Chang, T. Weng, T. Hsueh, IEEE Electron Device Lett. 2018, 39, 1223.
  48. G. Jung, S. Hong, Y. Jeong, W. Shin, J. Park, D. Kim, J.-H. Lee, ACS Appl. Mater. Interfaces 2022, 14, 17950.
  49. TGS3870, Methane/Carbon Monoxide Sensor, Figaro USA Inc, USA, https://www.figarosensor.com/product/entry/tgs3870.html (accessed: 05, 2023).
  50. A. Bedford, K. M. Liechti, Mechanics of Materials, Springer Nature, USA 2019.
  51. J. S. Lee, K. W. Choi, J. Y. Yoo, M. S. Jo, J. B. Yoon, Small 2020, 16, 1906845.
  52. T. Pan, M. Pharr, Y. Ma, R. Ning, Z. Yan, R. Xu, X. Feng, Y. Huang, J. A. Rogers, Adv. Funct. Mater. 2017, 27, 1702589.
  53. S. Jang, C. Kim, J. J. Park, M. L. Jin, S. J. Kim, O. O. Park, T. S. Kim, H. T. Jung, Small 2018, 14, 1702818.
  54. F. Kreith, R. M. Manglik, Principles of Heat Transfer, Cengage Learning, USA, 2016.
  55. M.-S. Jo, K.-H. Kim, K.-W. Choi, J.-S. Lee, J.-Y. Yoo, S.-H. Kim, H. Jin, M.-H. Seo, J.-B. Yoon, ACS Nano 2022, 16, 11957.
  56. J. Spannhake, O. Schulz, A. Helwig, A. Krenkow, G. Müller, T. Doll, Sensors 2006, 6, 405.
  57. Commission, C. P. S. Carbon-Monoxide-Questions-and-Answers, https://www.cpsc.gov/Safety-Education/Safety-Education-Centers/Carbon-Monoxide-Information-Center/Carbon-Monoxide-Questions-and-Answers#:~:text=At%20sustained%20CO%20concentrations%20above,unconsciousness%2C%20and%20death%20are%20possible (accessed: 05, 2023).
  58. A. N. Abdullah, K. Kamarudin, S. M. Mamduh, A. H. Adom, Z. H. M. Juffry, in Effect of Environmental Temperature and Humidity on Different Metal Oxide Gas Sensors at Various Gas Concentration Levels, IOP Conference Series: Materials Science and Engineering, IOP Publishing, England, 2020, p. 012152.
  59. K. Kim, J. K. Park, J. Lee, Y. J. Kwon, H. Choi, S.-M. Yang, J.-H. Lee, Y. K. Jeong, J. Hazard. Mater. 2022, 424, 127524.
  60. C.-H. Kwak, T.-H. Kim, S.-Y. Jeong, J.-W. Yoon, J.-S. Kim, J.-H. Lee, ACS Appl. Mater. Interfaces 2018, 10, 18886.
  61. Y. Liu, S. Yao, Q. Yang, P. Sun, Y. Gao, X. Liang, F. Liu, G. Lu, RSC Adv. 2015, 5, 52252.
  62. X. Zhu, X. Chang, S. Tang, X. Chen, W. Gao, S. Niu, J. Li, Y. Jiang, S. Sun, ACS Appl. Mater. Interfaces 2022, 14, 25680.
  63. M. Z. Ansari, C. Cho, Sens. Actuators, A 2012, 175, 19.
  64. M. Z. Ansari, C. Cho, Sensors 2012, 12, 1758.
  65. A. Materials, https://www.azom.com/properties.aspx?ArticleID=52 (accessed: 04, 2023).
  66. A. Cappella, J. L. Battaglia, V. Schick, A. Kusiak, A. Lamperti, C. Wiemer, B. Hay, Adv. Eng. Mater. 2013, 15, 1046.
  67. A. Materials, Titanium Dioxide - Titania (TiO2), https://www.azom.com/properties.aspx?ArticleID=1179 (accessed: 04, 2023).
  68. M. R. Saleem, S. Honkanen, J. I.n Turunen, Thermal Properties of TiO2 Films Fabricated by Atomic Layer Deposition, IOP Conference Series: Materials Science and Engineering, IOP Publishing, England 2014, p. 012008.
  69. MIT Thermal silicon oxide.  http://www.mit.edu/~6.777/matprops/sio2.htm (accessed: 04, 2023).
  70. R. Kato, I. Hatta, Int. J. Thermophys. 2008, 29, 2062.

Grants

  1. 2021M3H4A1A02050234/National Research Foundation of Korea
  2. 2022R1A2C2010714/National Research Foundation of Korea

Word Cloud

Created with Highcharts 10.0.0gasdevicessupportivelayerefficiencysensorportableheatingmetal-oxidesensorsfullypowerultrathinserpentineoperating1 ppmToxicgasessurreptitiouslyinfluencedhealthenvironmentcontemporarysocietyodorless/colorlesscharacteristicsresultpressingneedreliablegas-sensingcontinuouslyincreasedHowevernegligenceefficientlymicrostructurebulkysensingmaterialslocatedprevioussemiconductorunableenhancecriticalfactorpower-stringentHereininsulationuniquearchitectureproposeddevelopmentpower-efficientconsuming23 mWtemperature300°C≈6%leadingcommercialproductUtilizingmechanicallyrobustdesignworkpresentssuspendedstandalonedevicethickness≈50 nmdevelopedshowsexcellentmechanicaldurability10 000on/offcycles≈2yearslifeexpectancycontinuousoperationdetectedcarbonmonoxideconcentrations30averageresponsetime≈15sdistinguishablesensitivityΔR/R0=5%mass-produciblefabricationpresentedprovideexemplaryplatformdiversepower-efficient-relatedUltrathinSerpentineInsulationLayerArchitectureUltralowPowerGasSensornanowireslayers

Similar Articles

Cited By (1)