Improved representation of the global dust cycle using observational constraints on dust properties and abundance.

Jasper F Kok, Adeyemi A Adebiyi, Samuel Albani, Yves Balkanski, Ramiro Checa-Garcia, Mian Chin, Peter R Colarco, Douglas S Hamilton, Yue Huang, Akinori Ito, Martina Klose, Danny M Leung, Longlei Li, Natalie M Mahowald, Ron L Miller, Vincenzo Obiso, Carlos Pérez García-Pando, Adriana Rocha-Lima, Jessica S Wan, Chloe A Whicker
Author Information
  1. Jasper F Kok: Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, CA 90095, USA.
  2. Adeyemi A Adebiyi: Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, CA 90095, USA.
  3. Samuel Albani: Department of Environmental and Earth Sciences, University of Milano-Bicocca, Milano, Italy.
  4. Yves Balkanski: Laboratoire des Sciences du Climat et de l'Environnement, CEA-CNRS-UVSQ-UPSaclay, Gif-sur-Yvette, France.
  5. Ramiro Checa-Garcia: Laboratoire des Sciences du Climat et de l'Environnement, CEA-CNRS-UVSQ-UPSaclay, Gif-sur-Yvette, France.
  6. Mian Chin: Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA.
  7. Peter R Colarco: Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA.
  8. Douglas S Hamilton: Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY 14850, USA.
  9. Yue Huang: Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, CA 90095, USA.
  10. Akinori Ito: Yokohama Institute for Earth Sciences, JAMSTEC, Yokohama, Kanagawa 236-0001, Japan.
  11. Martina Klose: Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain.
  12. Danny M Leung: Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, CA 90095, USA.
  13. Longlei Li: Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY 14850, USA.
  14. Natalie M Mahowald: Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY 14850, USA.
  15. Ron L Miller: NASA Goddard Institute for Space Studies, New York NY10025 USA.
  16. Vincenzo Obiso: Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain.
  17. Carlos Pérez García-Pando: Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain.
  18. Adriana Rocha-Lima: Physics Department, UMBC, Baltimore, Maryland, USA.
  19. Jessica S Wan: Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY 14850, USA.
  20. Chloe A Whicker: Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, CA 90095, USA.

Abstract

Even though desert dust is the most abundant aerosol by mass in Earth's atmosphere, atmospheric models struggle to accurately represent its spatial and temporal distribution. These model errors are partially caused by fundamental difficulties in simulating dust emission in coarse-resolution models and in accurately representing dust microphysical properties. Here we mitigate these problems by developing a new methodology that yields an improved representation of the global dust cycle. We present an analytical framework that uses inverse modeling to integrate an ensemble of global model simulations with observational constraints on the dust size distribution, extinction efficiency, and regional dust aerosol optical depth. We then compare the inverse model results against independent measurements of dust surface concentration and deposition flux and find that errors are reduced by approximately a factor of two relative to current model simulations of the Northern Hemisphere dust cycle. The inverse model results show smaller improvements in the less dusty Southern Hemisphere, most likely because both the model simulations and the observational constraints used in the inverse model are less accurate. On a global basis, we find that the emission flux of dust with geometric diameter up to 20 μm (PM) is approximately 5,000 Tg/year, which is greater than most models account for. This larger PM dust flux is needed to match observational constraints showing a large atmospheric loading of coarse dust. We obtain gridded data sets of dust emission, vertically integrated loading, dust aerosol optical depth, (surface) concentration, and wet and dry deposition fluxes that are resolved by season and particle size. As our results indicate that this data set is more accurate than current model simulations and the MERRA-2 dust reanalysis product, it can be used to improve quantifications of dust impacts on the Earth system.

References

  1. Sci Adv. 2020 Apr 08;6(15):eaaz9507 [PMID: 32285006]
  2. Nature. 2016 Mar 24;531(7595):493-5 [PMID: 27008968]
  3. Geophys Res Lett. 2016 Oct 16;43(19):10520-10529 [PMID: 32692319]
  4. J Clim. 2017 Sep 1;30(17):6851-6872 [PMID: 32908329]
  5. Nat Geosci. 2017;10:274-278 [PMID: 32747861]
  6. Curr Clim Change Rep. 2018;4(2):65-83 [PMID: 31008020]
  7. Proc Natl Acad Sci U S A. 2016 May 24;113(21):5820-7 [PMID: 26848136]
  8. Atmos Chem Phys. 2021;21(10):8127-8167 [PMID: 37649640]
  9. Nature. 2008 Apr 3;452(7187):616-9 [PMID: 18385736]
  10. Sci Adv. 2017 Jun 07;3(6):e1602569 [PMID: 28630907]
  11. J Clim. 2017 Jun 20;Volume 30(Iss 13):5419-5454 [PMID: 32020988]
  12. Proc Natl Acad Sci U S A. 2011 Jan 18;108(3):1016-21 [PMID: 21189304]
  13. Nature. 2013 Nov 7;503(7474):67-71 [PMID: 24201280]
  14. Sci Adv. 2018 Dec 12;4(12):eaau2768 [PMID: 30547085]
  15. Sci Rep. 2016 Jun 16;6:28162 [PMID: 27306584]
  16. Rep Prog Phys. 2012 Oct;75(10):106901 [PMID: 22982806]
  17. Science. 2011 Nov 11;334(6057):794-6 [PMID: 22076375]
  18. Geophys Res Lett. 2015 Oct 16;42(19):8208-8215 [PMID: 27667872]
  19. Proc Natl Acad Sci U S A. 2007 Apr 3;104(14):5743-8 [PMID: 17389397]
  20. J Clim. 2017 Sep;30(17):6823-6850 [PMID: 29576684]
  21. Science. 2012 Mar 2;335(6072):1078-82 [PMID: 22383844]
  22. J Adv Model Earth Syst. 2020 Aug;12(8):e2019MS002025 [PMID: 32999704]
  23. Ann Rev Mar Sci. 2009;1:245-78 [PMID: 21141037]
  24. Nat Commun. 2018 Jan 16;9(1):241 [PMID: 29339783]
  25. J Geophys Res Atmos. 2019 Jul 27;124(14):7975-7996 [PMID: 32637291]

Grants

  1. R25 GM055052/NIGMS NIH HHS

Word Cloud

Created with Highcharts 10.0.0dustmodelglobalinversesimulationsobservationalconstraintsaerosolmodelsemissioncycleresultsfluxatmosphericaccuratelydistributionerrorspropertiesrepresentationsizeopticaldepthsurfaceconcentrationdepositionfindapproximatelycurrentHemispherelessusedaccuratePMloadingdataEventhoughdesertabundantmassEarth'satmospherestrugglerepresentspatialtemporalpartiallycausedfundamentaldifficultiessimulatingcoarse-resolutionrepresentingmicrophysicalmitigateproblemsdevelopingnewmethodologyyieldsimprovedpresentanalyticalframeworkusesmodelingintegrateensembleextinctionefficiencyregionalcompareindependentmeasurementsreducedfactortworelativeNorthernshowsmallerimprovementsdustySouthernlikelybasisgeometricdiameter20μm5000Tg/yeargreateraccountlargerneededmatchshowinglargecoarseobtaingriddedsetsverticallyintegratedwetdryfluxesresolvedseasonparticleindicatesetMERRA-2reanalysisproductcanimprovequantificationsimpactsEarthsystemImprovedusingabundance

Similar Articles

Cited By (11)