Leveraging insect-specific viruses to elucidate mosquito population structure and dynamics.

Brandon D Hollingsworth, Nathan D Grubaugh, Brian P Lazzaro, Courtney C Murdock
Author Information
  1. Brandon D Hollingsworth: Department of Entomology, Cornell University, Ithaca, New York, United States of America. ORCID
  2. Nathan D Grubaugh: Yale School of Public Health, New Haven, Connecticut, United States of America.
  3. Brian P Lazzaro: Department of Entomology, Cornell University, Ithaca, New York, United States of America.
  4. Courtney C Murdock: Department of Entomology, Cornell University, Ithaca, New York, United States of America.

Abstract

Several aspects of mosquito ecology that are important for vectored disease transmission and control have been difficult to measure at epidemiologically important scales in the field. In particular, the ability to describe mosquito population structure and movement rates has been hindered by difficulty in quantifying fine-scale genetic variation among populations. The mosquito virome represents a possible avenue for quantifying population structure and movement rates across multiple spatial scales. Mosquito viromes contain a diversity of viruses, including several insect-specific viruses (ISVs) and "core" viruses that have high prevalence across populations. To date, virome studies have focused on viral discovery and have only recently begun examining viral ecology. While nonpathogenic ISVs may be of little public health relevance themselves, they provide a possible route for quantifying mosquito population structure and dynamics. For example, vertically transmitted viruses could behave as a rapidly evolving extension of the host's genome. It should be possible to apply established analytical methods to appropriate viral phylogenies and incidence data to generate novel approaches for estimating mosquito population structure and dispersal over epidemiologically relevant timescales. By studying the virome through the lens of spatial and genomic epidemiology, it may be possible to investigate otherwise cryptic aspects of mosquito ecology. A better understanding of mosquito population structure and dynamics are key for understanding mosquito-borne disease ecology and methods based on ISVs could provide a powerful tool for informing mosquito control programs.

References

  1. Microbiol Spectr. 2023 Feb 14;:e0465522 [PMID: 36786616]
  2. Microbiol Mol Biol Rev. 2008 Sep;72(3):457-70 [PMID: 18772285]
  3. Evolution. 2001 Jun;55(6):1095-103 [PMID: 11475045]
  4. Hepatology. 2021 Oct;74(4):1782-1794 [PMID: 34008172]
  5. PLoS Negl Trop Dis. 2017 Jan 30;11(1):e0005347 [PMID: 28135281]
  6. Front Cell Infect Microbiol. 2021 Feb 25;11:626368 [PMID: 33718273]
  7. Virology. 2019 Feb;528:89-100 [PMID: 30583288]
  8. Heredity (Edinb). 2018 May;120(5):386-395 [PMID: 29358725]
  9. PLoS Comput Biol. 2013;9(3):e1002947 [PMID: 23555203]
  10. J Theor Biol. 2019 Jul 7;472:95-109 [PMID: 30991073]
  11. J Med Entomol. 2011 Sep;48(5):1031-8 [PMID: 21936322]
  12. Parasit Vectors. 2014 Aug 26;7:395 [PMID: 25160565]
  13. Virus Evol. 2021 Jun 08;7(2):veab052 [PMID: 34527282]
  14. PLoS Negl Trop Dis. 2021 Apr 2;15(4):e0009311 [PMID: 33798192]
  15. Nat Commun. 2020 Nov 6;11(1):5620 [PMID: 33159066]
  16. Viruses. 2020 Aug 08;12(8): [PMID: 32784421]
  17. Mol Ecol. 2020 Oct;29(20):4000-4013 [PMID: 32854141]
  18. Intervirology. 2012;55(6):475-83 [PMID: 22854125]
  19. Acta Trop. 2016 May;157:73-83 [PMID: 26829359]
  20. J Gen Virol. 2020 Feb;101(2):216-225 [PMID: 31846415]
  21. Viruses. 2020 Feb 28;12(3): [PMID: 32121094]
  22. PLoS One. 2022 Jul 27;17(7):e0263143 [PMID: 35895627]
  23. Proc Natl Acad Sci U S A. 2012 Sep 11;109(37):15066-71 [PMID: 22927414]
  24. Proc Biol Sci. 2015 Dec 22;282(1821):20142878 [PMID: 26702033]
  25. Med Vet Entomol. 2019 Sep;33(3):397-406 [PMID: 30887540]
  26. Viruses. 2020 Sep 02;12(9): [PMID: 32887342]
  27. J Gen Virol. 2018 Dec;99(12):1729-1738 [PMID: 30412047]
  28. Virol J. 2019 Jan 3;16(1):1 [PMID: 30606229]
  29. mSystems. 2020 Sep 29;5(5): [PMID: 32994288]
  30. Virology. 2014 Sep;464-465:312-319 [PMID: 25108381]
  31. Med Vet Entomol. 1996 Jul;10(3):203-19 [PMID: 8887330]
  32. BMC Evol Biol. 2009 Jul 09;9:160 [PMID: 19589156]
  33. Viruses. 2020 Sep 22;12(9): [PMID: 32971986]
  34. Proc Biol Sci. 2011 Jan 7;278(1702):2-8 [PMID: 20685700]
  35. Mol Ecol Resour. 2019 Sep;19(5):1254-1264 [PMID: 31125998]
  36. Med Vet Entomol. 2005 Dec;19(4):451-7 [PMID: 16336310]
  37. Nat Commun. 2018 Jun 8;9(1):2222 [PMID: 29884821]
  38. Viruses. 2021 Oct 25;13(11): [PMID: 34834955]
  39. Mol Ecol Resour. 2020 Jan;20(1):154-169 [PMID: 31550072]
  40. J Virol. 2018 Aug 16;92(17): [PMID: 29950416]
  41. Mol Ecol Resour. 2022 Jan;22(1):137-152 [PMID: 34192415]
  42. Vector Borne Zoonotic Dis. 2021 Nov;21(11):900-909 [PMID: 34520272]
  43. PLoS Negl Trop Dis. 2010 Mar 16;4(3):e634 [PMID: 20300516]
  44. Virus Evol. 2018 Jan 10;4(1):vex040 [PMID: 29340209]
  45. PLoS One. 2020 Jan 31;15(1):e0227998 [PMID: 32004323]
  46. Am J Trop Med Hyg. 2012 Apr;86(4):665-76 [PMID: 22492152]
  47. Virus Res. 2018 Mar 2;247:120-124 [PMID: 29409678]
  48. Sci Rep. 2021 Apr 19;11(1):8448 [PMID: 33875673]
  49. Evolution. 2013 Dec;67(12):3403-11 [PMID: 24299396]
  50. Sci Rep. 2020 Oct 29;10(1):18654 [PMID: 33122748]
  51. Methods Mol Biol. 2012;888:3-12 [PMID: 22665272]
  52. PLoS Negl Trop Dis. 2021 Apr 26;15(4):e0009381 [PMID: 33901182]
  53. Trop Med Health. 2018 Jun 04;46:19 [PMID: 29991925]
  54. Viruses. 2021 Apr 27;13(5): [PMID: 33925487]
  55. Parasit Vectors. 2022 Aug 9;15(1):287 [PMID: 35945559]
  56. J Med Entomol. 2009 Jul;46(4):934-41 [PMID: 19645300]
  57. J R Soc Interface. 2014 Feb 26;11(94):20131106 [PMID: 24573331]
  58. J Med Entomol. 2013 May;50(3):533-42 [PMID: 23802447]
  59. Mol Ecol. 2021 Nov;30(21):5470-5487 [PMID: 34418188]
  60. Wellcome Open Res. 2020 Jun 25;5:149 [PMID: 33869790]
  61. Science. 2018 Aug 31;361(6405):894-899 [PMID: 30139911]
  62. Viruses. 2019 Nov 05;11(11): [PMID: 31694175]
  63. Mol Ecol Resour. 2017 May;17(3):466-480 [PMID: 27482633]
  64. Front Microbiol. 2021 Feb 08;11:591478 [PMID: 33628201]
  65. Science. 2017 Mar 24;355(6331):1302-1306 [PMID: 28336667]
  66. Trends Ecol Evol. 1999 Jun;14(6):219-224 [PMID: 10354623]
  67. Virus Evol. 2018 Dec 11;4(2):vey037 [PMID: 30555720]
  68. J Vet Med Sci. 2020 Jul 31;82(7):1030-1041 [PMID: 32448813]
  69. Parasit Vectors. 2019 Dec 19;12(1):597 [PMID: 31856896]
  70. J Infect Dis. 2020 Mar 28;221(Suppl 3):S308-S318 [PMID: 31711190]
  71. One Health. 2023 Jan 20;16:100490 [PMID: 36817977]
  72. Mol Ecol Resour. 2009 Jan;9(1):4-18 [PMID: 21564560]
  73. Virus Evol. 2020 Apr 29;6(1):veaa018 [PMID: 32368352]
  74. PLoS One. 2021 May 28;16(5):e0252369 [PMID: 34048473]
  75. Am J Trop Med Hyg. 2009 Jan;80(1):85-95 [PMID: 19141845]
  76. Curr Issues Mol Biol. 2020;34:1-12 [PMID: 31167953]
  77. Virology. 2018 Oct;523:74-88 [PMID: 30098450]
  78. Proc Natl Acad Sci U S A. 2022 Sep 6;119(36):e2118539119 [PMID: 36037344]
  79. Mol Ecol. 2014 Dec;23(23):5649-62 [PMID: 25256562]
  80. Microbiol Resour Announc. 2020 Jul 30;9(31): [PMID: 32732240]
  81. Virol J. 2021 Jul 19;18(1):150 [PMID: 34281569]
  82. Virology. 2014 Jan 5;448:146-58 [PMID: 24314645]
  83. Mol Ecol. 2022 May;31(9):2545-2561 [PMID: 35229389]
  84. PLoS Negl Trop Dis. 2021 Feb 26;15(2):e0009139 [PMID: 33635860]
  85. Trends Microbiol. 2021 Sep;29(9):788-797 [PMID: 33736902]
  86. Nat Protoc. 2017 Jun;12(6):1261-1276 [PMID: 28538739]
  87. J Med Entomol. 2013 Mar;50(2):300-9 [PMID: 23540117]
  88. Korean J Parasitol. 2020 Oct;58(5):551-558 [PMID: 33202507]
  89. Microorganisms. 2021 Aug 03;9(8): [PMID: 34442732]
  90. Am J Trop Med Hyg. 2011 Jul;85(1):169-77 [PMID: 21734144]
  91. PLoS Comput Biol. 2018 Nov 13;14(11):e1006546 [PMID: 30422979]
  92. Sci Rep. 2017 Oct 24;7(1):14399 [PMID: 29070818]
  93. mBio. 2022 Oct 26;13(5):e0102122 [PMID: 36069449]
  94. PLoS One. 2017 Nov 8;12(11):e0187429 [PMID: 29117239]
  95. Appl Environ Microbiol. 2022 Sep 27;88(18):e0106222 [PMID: 36036577]
  96. Am Nat. 2014 Jan;183(1):E17-35 [PMID: 24334746]
  97. BMC Med. 2018 Oct 18;16(1):192 [PMID: 30333024]
  98. Annu Rev Ecol Evol Syst. 2020 Nov;51(1):505-531 [PMID: 34366722]
  99. Malar J. 2019 Dec 23;18(1):441 [PMID: 31870365]
  100. Infect Dis Poverty. 2018 Jul 16;7(1):75 [PMID: 30021614]
  101. Virology. 2009 Mar 30;386(1):154-9 [PMID: 19193389]
  102. Infect Dis Poverty. 2023 May 9;12(1):48 [PMID: 37161462]
  103. Mol Biol Evol. 2017 May 1;34(5):1276-1288 [PMID: 28204593]
  104. Genetics. 2015 Feb;199(2):595-607 [PMID: 25527289]
  105. Virus Res. 2021 Sep;302:198494 [PMID: 34174341]
  106. Trans R Soc Trop Med Hyg. 2009 Nov;103(11):1105-12 [PMID: 19200566]
  107. Int J Health Geogr. 2011 May 18;10:35 [PMID: 21592339]
  108. Virus Evol. 2021 Sep 16;7(2):veab082 [PMID: 34712491]
  109. Nat Rev Microbiol. 2022 Jun;20(6):321-334 [PMID: 34983966]
  110. J Virol. 2013 Mar;87(5):2475-88 [PMID: 23255793]
  111. Nat Microbiol. 2019 Jan;4(1):10-19 [PMID: 30546099]
  112. Sci Rep. 2017 Jul 31;7(1):6935 [PMID: 28761113]
  113. Mol Ecol Resour. 2022 Apr;22(3):1200-1212 [PMID: 34597453]
  114. Evol Appl. 2011 May;4(3):415-28 [PMID: 25567992]
  115. Virology. 2009 Aug 15;391(1):119-29 [PMID: 19580982]
  116. Proc Natl Acad Sci U S A. 2016 Jul 19;113(29):8079-86 [PMID: 27432989]
  117. Sci Rep. 2021 Aug 16;11(1):16584 [PMID: 34400676]
  118. Ann Epidemiol. 2017 Jan;27(1):1-9 [PMID: 28081893]
  119. Braz J Microbiol. 2022 Mar;53(1):51-62 [PMID: 34727360]
  120. Lancet. 2012 Dec 1;380(9857):1956-65 [PMID: 23200504]
  121. Mol Biol Evol. 2019 Aug 1;36(8):1804-1816 [PMID: 31058982]
  122. Mol Biol Evol. 2010 Aug;27(8):1877-85 [PMID: 20203288]
  123. Curr Opin Virol. 2021 Aug;49:7-12 [PMID: 33991759]
  124. Sci Rep. 2020 Apr 22;10(1):6803 [PMID: 32321946]
  125. PLoS Negl Trop Dis. 2020 May 4;14(5):e0008279 [PMID: 32365059]
  126. Infect Genet Evol. 2020 Nov;85:104561 [PMID: 32961364]
  127. Arch Virol. 2015 Sep;160(9):2259-68 [PMID: 26118548]
  128. Mol Ecol. 2004 Jan;13(1):55-65 [PMID: 14653788]
  129. Viruses. 2019 Nov 06;11(11): [PMID: 31698792]
  130. Environ Microbiol. 2018 Dec 25;: [PMID: 30585387]
  131. Mol Ecol. 2015 Sep;24(17):4348-70 [PMID: 26184487]
  132. Virus Evol. 2022 Feb 02;8(1):veac006 [PMID: 35242359]
  133. Epidemics. 2015 Mar;10:88-92 [PMID: 25843391]
  134. Am J Trop Med Hyg. 2003 Nov;69(5):494-505 [PMID: 14695086]
  135. Virol J. 2012 Mar 27;9:73 [PMID: 22452813]
  136. J Med Entomol. 2022 Jul 13;59(4):1164-1170 [PMID: 35640992]
  137. Parasit Vectors. 2021 Aug 18;14(1):415 [PMID: 34407871]
  138. Vector Borne Zoonotic Dis. 2010 Oct;10(8):777-83 [PMID: 20370430]
  139. PLoS Negl Trop Dis. 2018 Nov 19;12(11):e0006949 [PMID: 30452443]
  140. Appl Environ Microbiol. 2019 Sep 17;85(19): [PMID: 31350319]
  141. Virology. 2019 Jan 15;527:98-106 [PMID: 30476788]
  142. Viruses. 2023 Jan 14;15(1): [PMID: 36680275]
  143. Virology. 2016 Nov;498:288-299 [PMID: 27639161]
  144. Viruses. 2020 Aug 24;12(9): [PMID: 32846980]
  145. Sci Rep. 2019 Apr 19;9(1):6319 [PMID: 31004099]
  146. Mol Biol Evol. 2016 Aug;33(8):2102-16 [PMID: 27189573]
  147. PLoS Comput Biol. 2014 Apr 17;10(4):e1003570 [PMID: 24743590]
  148. J Gen Virol. 2019 Feb;100(2):295-300 [PMID: 30632960]
  149. Nat Biotechnol. 2020 Apr;38(4):482-492 [PMID: 32265562]
  150. Pathogens. 2020 Aug 21;9(9): [PMID: 32839419]
  151. Sci China Life Sci. 2020 Jul;63(7):1089-1092 [PMID: 31834603]
  152. Virol Sin. 2018 Feb;33(1):59-66 [PMID: 29500689]
  153. J Med Entomol. 2022 Mar 16;59(2):659-666 [PMID: 35064663]
  154. Genetics. 2000 Jul;155(3):1429-37 [PMID: 10880500]
  155. Viruses. 2020 Oct 13;12(10): [PMID: 33066222]
  156. PNAS Nexus. 2022 Sep 12;1(4):pgac190 [PMID: 36714845]
  157. Front Microbiol. 2020 Apr 28;11:735 [PMID: 32457705]
  158. Nat Med. 2019 Feb;25(2):206-211 [PMID: 30728537]
  159. J Virol. 2017 Aug 10;91(17): [PMID: 28637756]
  160. Mol Biol Evol. 2014 Feb;31(2):258-71 [PMID: 24150038]
  161. Mol Biol Evol. 2005 May;22(5):1185-92 [PMID: 15703244]
  162. Mol Biol Evol. 2017 Oct 1;34(10):2563-2571 [PMID: 28651357]
  163. Arch Virol. 2020 Aug;165(8):1769-1776 [PMID: 32440701]
  164. Virology. 2018 Oct;523:35-40 [PMID: 30077072]
  165. Nature. 2016 Dec 22;540(7634):539-543 [PMID: 27880757]
  166. Proc Natl Acad Sci U S A. 2012 Jun 12;109(24):9535-8 [PMID: 22645364]
  167. PLoS Comput Biol. 2017 Mar 28;13(3):e1005448 [PMID: 28350852]
  168. PLoS Negl Trop Dis. 2013;7(1):e1913 [PMID: 23326609]
  169. Syst Biol. 2018 Jul 1;67(4):719-728 [PMID: 29432602]
  170. Science. 2001 May 11;292(5519):1109-12 [PMID: 11352066]
  171. Genome Biol. 2019 Jan 8;20(1):8 [PMID: 30621750]
  172. Sci Rep. 2018 Mar 16;8(1):4690 [PMID: 29549363]
  173. PeerJ. 2019 Oct 29;7:e7921 [PMID: 31681512]
  174. Trends Parasitol. 2014 Mar;30(3):115-22 [PMID: 24513566]
  175. Mol Ecol. 2019 Sep;28(18):4335-4350 [PMID: 31535448]
  176. J Theor Biol. 2005 Jul 21;235(2):275-88 [PMID: 15862595]
  177. PLoS Negl Trop Dis. 2014 Apr 17;8(4):e2769 [PMID: 24743730]
  178. Elife. 2021 Apr 27;10: [PMID: 33904402]
  179. Microbiome. 2019 Aug 28;7(1):121 [PMID: 31462331]
  180. Emerg Infect Dis. 1995 Apr-Jun;1(2):55-7 [PMID: 8903160]
  181. PLoS Negl Trop Dis. 2017 Oct 18;11(10):e0006009 [PMID: 29045401]
  182. Nat Commun. 2019 Nov 22;10(1):5310 [PMID: 31757953]
  183. Comp Immunol Microbiol Infect Dis. 2013 Jul;36(4):387-96 [PMID: 23466196]
  184. Viruses. 2022 Jul 07;14(7): [PMID: 35891469]
  185. PLoS Pathog. 2011 Jun;7(6):e1002064 [PMID: 21655108]
  186. mSphere. 2021 Apr 21;6(2): [PMID: 33883261]
  187. One Health. 2023 Feb 01;16:100493 [PMID: 36817976]
  188. J Gen Virol. 2015 Feb;96(Pt 2):420-430 [PMID: 25326313]
  189. Bull World Health Organ. 1969 Apr;40(4):531-45 [PMID: 5306719]
  190. J R Soc Interface. 2021 Jun;18(179):20210041 [PMID: 34102084]
  191. Viruses. 2018 Jan 12;10(1): [PMID: 29329230]
  192. BMC Genomics. 2019 Aug 20;20(1):664 [PMID: 31429704]
  193. Infect Dis Poverty. 2021 Apr 26;10(1):57 [PMID: 33902684]
  194. Mol Biol Evol. 2001 Dec;18(12):2298-305 [PMID: 11719579]
  195. Am J Trop Med Hyg. 2005 Feb;72(2):209-20 [PMID: 15741559]
  196. BMC Biol. 2020 Aug 20;18(1):104 [PMID: 32819378]
  197. Viruses. 2023 May 03;15(5): [PMID: 37243199]

Grants

  1. T32 AI145821/NIAID NIH HHS
  2. UL1 TR001863/NCATS NIH HHS

MeSH Term

Animals
Insect Viruses
Ecology
Genetic Vectors
Genomics
Insecta

Word Cloud

Created with Highcharts 10.0.0mosquitopopulationstructurevirusesecologypossiblequantifyingviromeISVsviraldynamicsaspectsimportantdiseasecontrolepidemiologicallyscalesmovementratespopulationsacrossspatialinsect-specificmayprovidemethodsunderstandingSeveralvectoredtransmissiondifficultmeasurefieldparticularabilitydescribehindereddifficultyfine-scalegeneticvariationamongrepresentsavenuemultipleMosquitoviromescontaindiversityincludingseveral"core"highprevalencedatestudiesfocuseddiscoveryrecentlybegunexaminingnonpathogeniclittlepublichealthrelevancerouteexampleverticallytransmittedbehaverapidlyevolvingextensionhost'sgenomeapplyestablishedanalyticalappropriatephylogeniesincidencedatageneratenovelapproachesestimatingdispersalrelevanttimescalesstudyinglensgenomicepidemiologyinvestigateotherwisecrypticbetterkeymosquito-bornebasedpowerfultoolinformingprogramsLeveragingelucidate

Similar Articles

Cited By