Eco-friendly synthesized nanoparticles as antimicrobial agents: an updated review.

Shilpa Borehalli Mayegowda, Arpita Roy, Manjula N G, Soumya Pandit, Saad Alghamdi, Mazen Almehmadi, Mamdouh Allahyani, Nasser S Awwad, Rohit Sharma
Author Information
  1. Shilpa Borehalli Mayegowda: Department of Psychology, CHRIST (Deemed to be University), Bangalore, India.
  2. Arpita Roy: Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, India.
  3. Manjula N G: Department of Microbiology, School of Basic and Applied Sciences, Dayananda Sagar University, Bengaluru, India.
  4. Soumya Pandit: Department of Life Sciences, School of Basic Science and Research, Sharda University, Greater Noida, India.
  5. Saad Alghamdi: Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia.
  6. Mazen Almehmadi: Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia.
  7. Mamdouh Allahyani: Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia.
  8. Nasser S Awwad: Department of Chemistry, King Khalid University, Abha, Saudi Arabia.
  9. Rohit Sharma: Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India.

Abstract

Green synthesis of NPs has gained extensive acceptance as they are reliable, eco-friendly, sustainable, and stable. Chemically synthesized NPs cause lung inflammation, heart problems, liver dysfunction, immune suppression, organ accumulation, and altered metabolism, leading to organ-specific toxicity. NPs synthesized from plants and microbes are biologically safe and cost-effective. These microbes and plant sources can consume and accumulate inorganic metal ions from their adjacent niches, thus synthesizing extracellular and intracellular NPs. These inherent characteristics of biological cells to process and modify inorganic metal ions into NPs have helped explore an area of biochemical analysis. Biological entities or their extracts used in NPs include algae, bacteria, fungi, actinomycetes, viruses, yeasts, and plants, with varying capabilities through the bioreduction of metallic NPs. These biosynthesized NPs have a wide range of pharmaceutical applications, such as tissue engineering, detection of pathogens or proteins, antimicrobial agents, anticancer mediators, vehicles for drug delivery, formulations for functional foods, and identification of pathogens, which can contribute to translational research in medical applications. NPs have various applications in the food and drug packaging industry, agriculture, and environmental remediation.

Keywords

References

  1. Int J Mol Sci. 2019 Jan 21;20(2): [PMID: 30669621]
  2. Ecotoxicology. 2008 Jul;17(5):326-43 [PMID: 18459043]
  3. J Biomed Mater Res. 2000 Dec 15;52(4):662-8 [PMID: 11033548]
  4. J Biomed Mater Res A. 2022 Feb;110(2):424-442 [PMID: 34331516]
  5. Water Environ Res. 2022 Jun;94(6):e10744 [PMID: 35662318]
  6. Dent Mater. 2017 Oct;33(10):1110-1126 [PMID: 28779891]
  7. J Control Release. 2012 Jul 10;161(1):116-23 [PMID: 22549012]
  8. Environ Sci Pollut Res Int. 2018 Apr;25(11):10362-10370 [PMID: 28600792]
  9. Langmuir. 2008 Jun 3;24(11):5787-94 [PMID: 18454562]
  10. Nanotechnology. 2008 Jun 25;19(25):255102 [PMID: 21828644]
  11. Biotechnol Rep (Amst). 2022 Apr 04;34:e00728 [PMID: 35686013]
  12. Microbiol Immunol. 2018 Apr;62(4):211-220 [PMID: 29405384]
  13. J Am Chem Soc. 2003 Jul 2;125(26):7860-5 [PMID: 12823004]
  14. Biotechnol Rep (Amst). 2017 Feb 10;14:1-7 [PMID: 28459002]
  15. J Am Chem Soc. 2005 Jul 6;127(26):9326-7 [PMID: 15984833]
  16. Vaccines (Basel). 2022 Nov 17;10(11): [PMID: 36423041]
  17. Environ Sci Technol. 2008 Aug 1;42(15):5580-5 [PMID: 18754479]
  18. Appl Environ Microbiol. 2005 Nov;71(11):7589-93 [PMID: 16269810]
  19. Microbiology (Reading). 2002 Aug;148(Pt 8):2599-2606 [PMID: 12177354]
  20. Appl Microbiol Biotechnol. 2016 Aug;100(15):6555-6570 [PMID: 27289481]
  21. Nanotoxicology. 2019 Apr;13(3):369-391 [PMID: 30729847]
  22. Environ Sci Technol. 2008 Jun 1;42(11):4133-9 [PMID: 18589977]
  23. Biometals. 2009 Apr;22(2):235-42 [PMID: 18769871]
  24. Vet Res. 2010 Nov-Dec;41(6):38 [PMID: 20167200]
  25. J Contam Hydrol. 2013 Mar;146:63-73 [PMID: 23422514]
  26. Nanotechnology. 2012 Feb 10;23(5):055602 [PMID: 22236554]
  27. Int J Nanomedicine. 2012;7:5745-56 [PMID: 23166439]
  28. Bioconjug Chem. 2009 Aug 19;20(8):1497-502 [PMID: 21141805]
  29. Toxicol Lett. 2005 Aug 14;158(2):122-32 [PMID: 16039401]
  30. J Phys Chem B. 2008 Oct 30;112(43):13608-19 [PMID: 18831567]
  31. J Nanobiotechnology. 2005 Jun 29;3:6 [PMID: 15987516]
  32. J Nanobiotechnology. 2010 Jul 13;8:15 [PMID: 20626911]
  33. Microb Pathog. 2018 Jan;114:41-45 [PMID: 29146498]
  34. Int J Food Microbiol. 2007 Nov 30;120(1-2):51-70 [PMID: 17614151]
  35. Front Microbiol. 2021 Nov 15;12:767104 [PMID: 34867899]
  36. Rev Inst Med Trop Sao Paulo. 2015 Mar-Apr;57(2):165-7 [PMID: 25923897]
  37. Environ Sci Technol. 2005 May 1;39(9):3314-20 [PMID: 15926584]
  38. Molecules. 2011 Oct 24;16(10):8894-918 [PMID: 22024958]
  39. Molecules. 2013 May 21;18(5):5954-64 [PMID: 23698048]
  40. J Am Chem Soc. 2003 Dec 3;125(48):14676-7 [PMID: 14640621]
  41. RSC Adv. 2020 Feb 5;10(10):5894-5904 [PMID: 35497427]
  42. Nanomaterials (Basel). 2016 Nov 12;6(11): [PMID: 28335338]
  43. Front Chem. 2023 Mar 23;11:1143614 [PMID: 37035117]
  44. Small. 2010 Dec 20;6(24):2900-6 [PMID: 21104827]
  45. Antivir Ther. 2008;13(2):253-62 [PMID: 18505176]
  46. Int J Nanomedicine. 2018 Nov 27;13:8013-8024 [PMID: 30568442]
  47. Chemistry. 2005 Jan 7;11(2):454-63 [PMID: 15565727]
  48. Toxicol Lett. 2008 Aug 28;180(3):222-9 [PMID: 18662754]
  49. Front Chem. 2019 Apr 05;7:167 [PMID: 31024882]
  50. Small. 2006 Jun;2(6):766-73 [PMID: 17193121]
  51. Front Microbiol. 2017 Aug 07;8:1501 [PMID: 28824605]
  52. J Pharm Bioallied Sci. 2012 Jul;4(3):186-93 [PMID: 22923959]
  53. Mycobiology. 2012 Mar;40(1):53-8 [PMID: 22783135]
  54. Saudi J Biol Sci. 2021 Aug;28(8):4592-4604 [PMID: 34354445]
  55. Environ Toxicol Chem. 2008 Sep;27(9):1972-8 [PMID: 18690762]
  56. J Nanobiotechnology. 2010 Jan 20;8:1 [PMID: 20145735]
  57. Small. 2006 Jan;2(1):135-41 [PMID: 17193569]
  58. Biomed Res Int. 2015;2015:365672 [PMID: 26613082]
  59. Evid Based Complement Alternat Med. 2022 May 5;2022:2500613 [PMID: 35571735]
  60. Nat Biotechnol. 2004 Aug;22(8):969-76 [PMID: 15258594]
  61. Bioconjug Chem. 2004 Jul-Aug;15(4):897-900 [PMID: 15264879]
  62. Antimicrob Agents Chemother. 1997 Mar;41(3):672-6 [PMID: 9056012]
  63. ACS Appl Mater Interfaces. 2020 Feb 12;12(6):6944-6954 [PMID: 31917545]
  64. Appl Microbiol Biotechnol. 2006 Jan;69(5):485-92 [PMID: 16317546]
  65. Molecules. 2015 Sep 11;20(9):16540-65 [PMID: 26378513]
  66. Nano Lett. 2006 Apr;6(4):662-8 [PMID: 16608261]

MeSH Term

Anti-Infective Agents
Actinobacteria
Agriculture
Drug Delivery Systems
Nanoparticles

Chemicals

Anti-Infective Agents

Word Cloud

Created with Highcharts 10.0.0NPssynthesizedapplicationsantimicrobialagentsdrugsynthesiseco-friendlyplantsmicrobescaninorganicmetalionspathogensanticancerdeliveryGreengainedextensiveacceptancereliablesustainablestableChemicallycauselunginflammationheartproblemsliverdysfunctionimmunesuppressionorganaccumulationalteredmetabolismleadingorgan-specifictoxicitybiologicallysafecost-effectiveplantsourcesconsumeaccumulateadjacentnichesthussynthesizingextracellularintracellularinherentcharacteristicsbiologicalcellsprocessmodifyhelpedexploreareabiochemicalanalysisBiologicalentitiesextractsusedincludealgaebacteriafungiactinomycetesvirusesyeastsvaryingcapabilitiesbioreductionmetallicbiosynthesizedwiderangepharmaceuticaltissueengineeringdetectionproteinsmediatorsvehiclesformulationsfunctionalfoodsidentificationcontributetranslationalresearchmedicalvariousfoodpackagingindustryagricultureenvironmentalremediationEco-friendlynanoparticlesagents:updatedreviewDNAdamageantioxidantactivitygreen

Similar Articles

Cited By