Reduced left ventricular function on cardiac MRI of SLE patients correlates with measures of disease activity and inflammation.

Audrey M Hagiwara, Erica Montano, Gantseg Tumurkhuu, Moumita Bose, Marianne Bernardo, Daniel S Berman, Galen Cook Wiens, Michael D Nelson, Daniel Wallace, Janet Wei, Mariko Ishimori, C Noel Bairey Merz, Caroline Jefferies
Author Information
  1. Audrey M Hagiwara: Division of Rheumatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA.
  2. Erica Montano: Division of Rheumatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA.
  3. Gantseg Tumurkhuu: Division of Rheumatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA.
  4. Moumita Bose: Division of Rheumatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA.
  5. Marianne Bernardo: Division of Rheumatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA.
  6. Daniel S Berman: S. Mark Taper Foundation Imaging Center, Cedars-Sinai Medical Center.
  7. Galen Cook Wiens: Barbra Streisand Women's Heart Center, Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center.
  8. Michael D Nelson: Barbra Streisand Women's Heart Center, Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center.
  9. Daniel Wallace: Division of Rheumatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA.
  10. Janet Wei: Department of Cardiology, Cedars-Sinai Medical Center.
  11. Mariko Ishimori: Division of Rheumatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA.
  12. C Noel Bairey Merz: Department of Cardiology, Cedars-Sinai Medical Center.
  13. Caroline Jefferies: Division of Rheumatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA.

Abstract

Background: Women with SLE have an elevated risk of cardiovascular disease. Many women with SLE frequently report chest pain in the absence of obstructive coronary artery disease (CAD) due to coronary microvascular dysfunction (CMD), a form of ischemia with no obstructive CAD. Echocardiographic studies have shown that SLE patients have reduced left ventricular (LV) function, which may also correlate with higher SLE disease activity scores. As such, we used cardiac magnetic resonance imaging (cMRI) to investigate the relationship between SLE, related inflammatory biomarkers, and cardiac function in female SLE patients.
Methods: We performed stress cMRI in women with SLE and chest pain with no obstructive CAD (n=13, all met ACR 1997 criteria,) and reference controls (n=22) using our published protocol. We evaluated LV function, tissue characterization (T1 mapping, ECV), and delayed enhancement, using CV142 software (Circle Cardiovascular Imaging Inc, Calgary, AB, Canada). Myocardial perfusion reserve index (MPRI) was calculated using our published protocol. SLEDAI and SLICC Damage Index (DI) were calculated per validated criteria. Serum samples were analyzed for inflammatory markers and autoantibodies. Wilcoxon rank-sum test was performed on clinical values with CMD and no CMD SLE subjects, and on cMRI values with all SLE subjects and controls. Correlation analysis was done on clinical values, and cMRI values on all SLE subjects.
Results: Overall, 40% of SLE subjects had MPRI values < 1.84, consistent with CMD. Compared to controls, SLE subjects had significantly lower LVEF, and higher LVESVi and LVMi. Corresponding to this, radial, longitudinal, and circumferential strain were significantly lower in the SLE subjects. In correlation analysis of serum inflammatory biomarkers to cMRI values in the SLE subjects, SLICC DI was related to worse cardiac function (lower radial, circumferential and longitudinal strain) and higher T1 time. Additionally, fasting insulin and ESR were negatively correlated with LVMi. Fasting insulin also negatively correlated with ECV. CRP had a positive association with LVESV index and CI and a negative association with longitudinal strain.
Conclusions: Among women with SLE with chest pain and no obstructive CAD, 40% have CMD. While evaluations of known inflammatory markers (such as CRP and ESR) predictably correlated with decreased cardiac function, our study found that decreased fasting insulin levels as a novel marker of diminished LV function. In addition, low insulin levels were observed to correlate with increased LVMi and ECV, suggesting a cardioprotective effect of insulin in SLE patients. We also noted that SLICC DI, an assessment of SLE damage, correlates with cardiac dysfunction in SLE. Our findings underline the potential of non-invasive cMRI as a tool for monitoring cardiovascular function in SLE, particularly in patients with high SLICC DI, ESR and CRP and low fasting insulin levels.

References

  1. Circulation. 2007 Jul 24;116(4):419-26 [PMID: 17620509]
  2. N Engl J Med. 2003 Dec 18;349(25):2399-406 [PMID: 14681505]
  3. Arthritis Rheum. 1992 Jun;35(6):630-40 [PMID: 1599520]
  4. Quant Imaging Med Surg. 2022 May;12(5):2947-2960 [PMID: 35502373]
  5. J Cardiovasc Thorac Res. 2018;10(4):231-235 [PMID: 30680083]
  6. J Am Heart Assoc. 2020 May 18;9(10):e015393 [PMID: 32406318]
  7. J Rheumatol. 2013 May;40(5):746-7 [PMID: 23637384]
  8. JACC Cardiovasc Imaging. 2019 Oct;12(10):1958-1969 [PMID: 30772231]
  9. Arthritis Care Res (Hoboken). 2014 Apr;66(4):608-16 [PMID: 24106157]
  10. Circulation. 2013 Mar 5;127(9):1040-8 [PMID: 23459576]
  11. Lupus Sci Med. 2018 Nov 17;5(1):e000267 [PMID: 30538814]
  12. J Am Heart Assoc. 2021 Jul 6;10(13):e018555 [PMID: 34132099]
  13. J Am Coll Cardiol. 2008 Dec 16;52(25):2148-55 [PMID: 19095132]
  14. JPEN J Parenter Enteral Nutr. 2016 May;40(4):475-86 [PMID: 25634161]
  15. Arthritis Care Res (Hoboken). 2011 Feb;63(2):178-83 [PMID: 20740611]
  16. Arthritis Care Res (Hoboken). 2020 Jul;72(7):882-887 [PMID: 31058466]
  17. Nat Rev Cardiol. 2015 Mar;12(3):168-76 [PMID: 25533796]
  18. WMJ. ;115(6):317-21 [PMID: 29094869]
  19. Vessel Plus. 2022;6: [PMID: 35836794]
  20. Arthritis Rheum. 2007 Oct;56(10):3412-9 [PMID: 17907140]
  21. Circulation. 2017 Mar 14;135(11):1075-1092 [PMID: 28289007]
  22. J Am Heart Assoc. 2015 Sep 15;4(9):e002188 [PMID: 26374295]
  23. Front Cardiovasc Med. 2022 Apr 15;9:867155 [PMID: 35498009]
  24. J Cardiovasc Magn Reson. 2018 Feb 22;20(1):14 [PMID: 29471856]
  25. Circulation. 1993 Mar;87(3):755-63 [PMID: 8443896]
  26. Eur Heart J. 2008 Mar;29(6):741-7 [PMID: 18204091]
  27. Curr Rheumatol Rep. 2021 Feb 10;23(3):16 [PMID: 33569681]
  28. Arthritis Rheum. 2012 Aug;64(8):2677-86 [PMID: 22553077]
  29. Lupus Sci Med. 2019 Jun 29;6(1):e000330 [PMID: 31321063]
  30. Crit Care Med. 2007 Sep;35(9 Suppl):S519-23 [PMID: 17713402]
  31. Indian Heart J. 2013 Jan-Feb;65(1):30-9 [PMID: 23438610]
  32. Arthritis Res Ther. 2012;14(3):R110 [PMID: 22571761]
  33. Circulation. 1991 Sep;84(3 Suppl):I167-76 [PMID: 1884482]
  34. Rheumatology (Oxford). 2015 Nov;54(11):1976-81 [PMID: 26106213]
  35. JACC Cardiovasc Imaging. 2011 Jan;4(1):27-33 [PMID: 21232700]
  36. Eur Heart J Cardiovasc Imaging. 2022 Aug 22;23(9):e308-e322 [PMID: 35808990]
  37. JACC Cardiovasc Imaging. 2021 Mar;14(3):602-611 [PMID: 33248966]
  38. Am Heart J. 1993 Apr;125(4):1117-22 [PMID: 8465737]
  39. Am J Epidemiol. 1997 Mar 1;145(5):408-15 [PMID: 9048514]
  40. Circ Cardiovasc Imaging. 2015 Apr;8(4): [PMID: 25801710]
  41. Bull World Health Organ. 1962;27:645-58 [PMID: 13974778]
  42. Curr Atheroscler Rep. 2023 Aug;25(8):435-446 [PMID: 37338666]
  43. J Autoimmun. 2020 Jun;110:102374 [PMID: 31812331]

Grants

  1. N01 HV068161/NHLBI NIH HHS
  2. R03 AG032631/NIA NIH HHS
  3. UL1 TR000124/NCATS NIH HHS
  4. N01 HV068164/NHLBI NIH HHS
  5. M01 RR000425/NCRR NIH HHS
  6. R01 AI164504/NIAID NIH HHS
  7. R01 HL146158/NHLBI NIH HHS
  8. R01 HL153500/NHLBI NIH HHS
  9. N01HV68163/NHLBI NIH HHS
  10. N01HV68162/NHLBI NIH HHS
  11. R01 HL090957/NHLBI NIH HHS

Word Cloud

Created with Highcharts 10.0.0SLEfunctionsubjectscardiaccMRIvaluesinsulinCMDpatientsdiseaseobstructiveCADinflammatorySLICCDIwomenchestpainLValsohighercontrolsusingECVlowerLVMilongitudinalstrainfastingESRcorrelatedCRPlevelscardiovascularcoronarydysfunctionleftventricularcorrelateactivityrelatedbiomarkersperformedcriteriapublishedprotocolT1indexMPRIcalculatedmarkersclinicalanalysis40%significantlyradialcircumferentialnegativelyassociationdecreasedlowcorrelatesBackground:WomenelevatedriskManyfrequentlyreportabsencearteryduemicrovascularformischemiaEchocardiographicstudiesshownreducedmayscoresusedmagneticresonanceimaginginvestigaterelationshipfemaleMethods:stressn=13metACR1997referencen=22evaluatedtissuecharacterizationmappingdelayedenhancementCV142softwareCircleCardiovascularImagingIncCalgaryABCanadaMyocardialperfusionreserveSLEDAIDamageIndexpervalidatedSerumsamplesanalyzedautoantibodiesWilcoxonrank-sumtestCorrelationdoneResults:Overall<184consistentComparedLVEFLVESViCorrespondingcorrelationserumworsetimeAdditionallyFastingpositiveLVESVCInegativeConclusions:Amongevaluationsknownpredictablystudyfoundnovelmarkerdiminishedadditionobservedincreasedsuggestingcardioprotectiveeffectnotedassessmentdamagefindingsunderlinepotentialnon-invasivetoolmonitoringparticularlyhighReducedMRImeasuresinflammation

Similar Articles

Cited By