-hydroxybutyrate stabilizes hippocampal CA3-CA1 circuit during acute insulin resistance.

Bartosz Kula, Botond Antal, Corey Weistuch, Florian Gackière, Alexander Barre, Victor Velado, Jeffrey M Hubbard, Maria Kukley, Lilianne R Mujica-Parodi, Nathan A Smith
Author Information
  1. Bartosz Kula: Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester, School of Medicine and Dentistry, Rochester, USA.
  2. Botond Antal: Department of Biomedical Engineering, Stony Brook University, Stony Brook, USA.
  3. Corey Weistuch: Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
  4. Florian Gackière: Neuroservices Alliance, Les Jardins de l'Entreprise, Quartier de le Confrérie, Le Puy Ste Réparade, France.
  5. Alexander Barre: Neuroservices Alliance, Les Jardins de l'Entreprise, Quartier de le Confrérie, Le Puy Ste Réparade, France.
  6. Victor Velado: Center for Neuroscience Research, Children's National Research Institute, Children's National Hospital, Washington D.C., USA.
  7. Jeffrey M Hubbard: Neuroservices Alliance, Les Jardins de l'Entreprise, Quartier de le Confrérie, Le Puy Ste Réparade, France.
  8. Maria Kukley: Achucarro Basque Center for Neuroscience, Leioa, Spain.
  9. Lilianne R Mujica-Parodi: Department of Biomedical Engineering, Stony Brook University, Stony Brook, USA. ORCID
  10. Nathan A Smith: Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester, School of Medicine and Dentistry, Rochester, USA. ORCID

Abstract

The brain primarily relies on glycolysis for mitochondrial respiration but switches to alternative fuels such as ketone bodies (KBs) when less glucose is available. Neuronal KB uptake, which does not rely on glucose transporter 4 (GLUT4) or insulin, has shown promising clinical applicability in alleviating the neurological and cognitive effects of disorders with hypometabolic components. However, the specific mechanisms by which such interventions affect neuronal functions are poorly understood. In this study, we pharmacologically blocked GLUT4 to investigate the effects of exogenous KB D-β-hydroxybutyrate (D-βHb) on mouse brain metabolism during acute insulin resistance (AIR). We found that both AIR and D-βHb had distinct impacts across neuronal compartments: AIR decreased synaptic activity and long-term potentiation (LTP) and impaired axonal conduction, synchronization, and action potential (AP) properties, while D-βHb rescued neuronal functions associated with axonal conduction, synchronization, and LTP.

Keywords

References

  1. Annu Rev Nutr. 2017 Aug 21;37:51-76 [PMID: 28826372]
  2. Pediatr Neurol. 2007 May;36(5):281-92 [PMID: 17509459]
  3. J Neuroinflammation. 2012 Jul 25;9:182 [PMID: 22830525]
  4. J Neurosci. 2012 Nov 7;32(45):15886-901 [PMID: 23136427]
  5. Science. 2013 Jan 11;339(6116):211-4 [PMID: 23223453]
  6. Neuroendocrinology. 2007;85(2):71-80 [PMID: 17426391]
  7. Neurobiol Aging. 2005 Dec;26 Suppl 1:65-9 [PMID: 16266773]
  8. J Physiol. 2015 Jul 1;593(13):2793-806 [PMID: 25833340]
  9. Neuron. 2010 Oct 6;68(1):99-112 [PMID: 20920794]
  10. Eur J Pharmacol. 2004 Apr 19;490(1-3):13-24 [PMID: 15094070]
  11. Int J Mol Sci. 2020 Nov 20;21(22): [PMID: 33233502]
  12. Nutr Metab (Lond). 2016 Feb 04;13:9 [PMID: 26855664]
  13. Trends Neurosci. 2013 Jan;36(1):32-40 [PMID: 23228828]
  14. Regul Toxicol Pharmacol. 2012 Aug;63(3):401-8 [PMID: 22561291]
  15. Front Mol Neurosci. 2021 Aug 27;14:732120 [PMID: 34512261]
  16. Neuron. 2000 Apr;26(1):13-25 [PMID: 10798388]
  17. J Neurochem. 2015 Mar;132(5):520-31 [PMID: 25330271]
  18. Hippocampus. 2008;18(11):1085-8 [PMID: 18651634]
  19. J Neurophysiol. 1991 Aug;66(2):635-50 [PMID: 1663538]
  20. Neurobiol Learn Mem. 2011 Oct;96(3):432-42 [PMID: 21907815]
  21. J Neurosci Res. 2017 Nov;95(11):2217-2235 [PMID: 28463438]
  22. Front Cell Neurosci. 2019 Aug 07;13:363 [PMID: 31440144]
  23. Proc Natl Acad Sci U S A. 2020 Mar 17;117(11):6170-6177 [PMID: 32127481]
  24. Mol Neurobiol. 2013 Feb;47(1):145-71 [PMID: 22956272]
  25. J Neurosci. 2016 Nov 23;36(47):11851-11864 [PMID: 27881773]
  26. Diabetes. 2002 Apr;51(4):937-42 [PMID: 11916910]
  27. J Neurophysiol. 2016 Dec 1;116(6):2523-2540 [PMID: 27605535]
  28. Front Nutr. 2018 Jul 12;5:62 [PMID: 30050907]
  29. Neuroscience. 2005;136(3):741-56 [PMID: 16344148]
  30. Neurology. 2013 Nov 12;81(20):1746-52 [PMID: 24153444]
  31. Neuron. 2022 Jan 19;110(2):280-296.e10 [PMID: 34741806]
  32. Proc Natl Acad Sci U S A. 2000 May 9;97(10):5440-4 [PMID: 10805800]
  33. Eur J Pharmacol. 2004 Apr 19;490(1-3):71-81 [PMID: 15094074]
  34. Biophys J. 2012 Oct 3;103(7):1429-39 [PMID: 23062335]
  35. EMBO Mol Med. 2011 Dec;3(12):742-54 [PMID: 21984534]
  36. Neuron. 2017 Feb 8;93(3):606-615.e3 [PMID: 28111082]
  37. Brain Res Mol Brain Res. 1996 May;38(1):45-53 [PMID: 8737666]
  38. J Cereb Blood Flow Metab. 2012 Jul;32(7):1222-32 [PMID: 22434069]
  39. Elife. 2022 May 24;11: [PMID: 35608247]
  40. Pediatr Res. 2004 Mar;55(3):372-9 [PMID: 14681492]
  41. Proc Natl Acad Sci U S A. 2000 Mar 14;97(6):2881-5 [PMID: 10706633]
  42. Neuromolecular Med. 2008;10(4):209-18 [PMID: 18543119]
  43. Int J Biomed Sci. 2014 Jun;10(2):85-102 [PMID: 25018677]
  44. Brain Res. 1998 Jun 22;797(1):1-11 [PMID: 9630471]
  45. Front Neurosci. 2021 May 20;15:626636 [PMID: 34093108]
  46. Nat Commun. 2019 Mar 29;10(1):1414 [PMID: 30926781]
  47. Annu Rev Neurosci. 2012;35:203-25 [PMID: 22443509]
  48. Brain Res. 2009 Nov 3;1296:35-45 [PMID: 19679110]
  49. Neuropharmacology. 2014 Apr;79:399-404 [PMID: 24361452]
  50. PLoS Comput Biol. 2012;8(9):e1002664 [PMID: 23028273]
  51. Cell Metab. 2017 Feb 7;25(2):262-284 [PMID: 28178565]
  52. Biochim Biophys Acta Mol Basis Dis. 2017 Feb;1863(2):499-508 [PMID: 27771511]
  53. J Neurosci. 2011 Jun 8;31(23):8689-96 [PMID: 21653873]
  54. Nature. 2009 Nov 19;462(7271):353-7 [PMID: 19924214]
  55. Diabetes. 2014 Jul;63(7):2262-72 [PMID: 24931033]
  56. Nat Commun. 2014 May 23;5:3817 [PMID: 24851940]
  57. Exp Neurol. 2020 Jan;323:113076 [PMID: 31614121]
  58. Proc Natl Acad Sci U S A. 2021 Oct 5;118(40): [PMID: 34588302]
  59. J Neurosci. 2007 Apr 4;27(14):3618-25 [PMID: 17409226]
  60. Elife. 2018 Jan 25;7: [PMID: 29368690]
  61. Neuroscience. 2007 Mar 2;145(1):256-64 [PMID: 17240074]
  62. Neurochem Int. 2011 Aug;59(2):309-18 [PMID: 21684314]
  63. PLoS One. 2011;6(9):e25237 [PMID: 21966466]
  64. Drugs. 2017 Jan;77(1):47-65 [PMID: 27988872]

Grants

  1. K01 NS110981/NINDS NIH HHS

Word Cloud

Created with Highcharts 10.0.0insulinGLUT4neuronalD-βHbresistanceAIRbrainketonebodiesglucoseKBeffectsfunctionsacuteLTPaxonalconductionsynchronizationprimarilyreliesglycolysismitochondrialrespirationswitchesalternativefuelsKBslessavailableNeuronaluptakerelytransporter4shownpromisingclinicalapplicabilityalleviatingneurologicalcognitivedisordershypometaboliccomponentsHoweverspecificmechanismsinterventionsaffectpoorlyunderstoodstudypharmacologicallyblockedinvestigateexogenousD-β-hydroxybutyratemousemetabolismfounddistinctimpactsacrosscompartments:decreasedsynapticactivitylong-termpotentiationimpairedactionpotentialAPpropertiesrescuedassociated-hydroxybutyratestabilizeshippocampalCA3-CA1circuitbeta-hydroxybutyratehippocampus

Similar Articles

Cited By