Semiparametric multivariate joint model for skewed-longitudinal and survival data: A Bayesian approach.

Jiaqing Chen, Yangxin Huang, Qing Wang
Author Information
  1. Jiaqing Chen: Department of Statistics, College of Science, Wuhan University of Technology, Wuhan, China.
  2. Yangxin Huang: College of Public Health, University of South Florida, Tampa, Florida, USA. ORCID
  3. Qing Wang: Yunnan Key Laboratory of Statistics Modeling and Data Analysis, Yunnan University, Kunming, China.

Abstract

Joint models and statistical inference for longitudinal and survival data have been an active area of statistical research and have mostly coupled a longitudinal biomarker-based mixed-effects model with normal distribution and an event time-based survival model. In practice, however, the following issues may standout: (i) Normality of model error in longitudinal models is a routine assumption, but it may be unrealistically violating data features of subject variations. (ii) Data collected are often featured by the mixed types of multiple longitudinal outcomes which are significantly correlated, ignoring their correlation may lead to biased estimation. Additionally, a parametric model specification may be inflexible to capture the complicated patterns of longitudinal data. (iii) Missing observations in the longitudinal data are often encountered; the missing measures are likely to be informative (nonignorable) and ignoring this phenomenon may result in inaccurate inference. Multilevel item response theory (MLIRT) models have been increasingly used to analyze the multiple longitudinal data of mixed types (ie, continuous and categorical) in clinical studies. In this article, we develop an MLIRT-based semiparametric joint model with skew-t distribution that consists of an extended MLIRT model for the mixed types of multiple longitudinal data and a Cox proportional hazards model, linked through random-effects. A Bayesian approach is employed for joint modeling. Simulation studies are conducted to assess performance of the proposed models and method. A real example from primary biliary cirrhosis clinical study is analyzed to estimate parameters in the joint model and also evaluate sensitivity of parameter estimates for various plausible nonignorable missing data mechanisms.

Keywords

References

  1. Murtaugh PA, Dickson ER, Van Dam GM, et al. Primary biliary cirrhosis: prediction of short-term survival based on repeated patient visits. Hepatology. 1994;20(1):126-134.
  2. Dil E, Karasoy D. Joint modeling of a longitudinal measurement and parametric survival data with application to primary biliary cirrhosis study. Pakistan J Stat Oper Res. 2020;16(2):295-304.
  3. Ding J, Wang JL. Modeling longitudinal data with nonparametric multiplicative random effects jointly with survival data. Biometrics. 2008;64(2):546-556.
  4. Papageorgiou G, Mauff K, Tomer A, et al. An overview of joint modeling of time-to-event and longitudinal outcomes. Annu Rev Stat Appl. 2019;6:223-240.
  5. Henderson R, Diggle P, Dobson A. Joint modelling of longitudinal measurements and event time data. Biostatistics. 2000;1(4):465-480.
  6. Huang Y, Dagne G, Wu L. Bayesian inference on joint models of HIV dynamics for time-to-event and longitudinal data with skewness and covariate measurement errors. Stat Med. 2011;30(24):2930-2946.
  7. Rizopoulos D. Dynamic predictions and prospective accuracy in joint models for longitudinal and time-to-event data. Biometrics. 2011;67(3):819-829.
  8. Rizopoulos D. Joint Models for Longitudinal and Time-to-Event Data: with Applications in R. New York: CRC Press; 2012.
  9. Tsiatis AA, Davidian M. Joint modeling of longitudinal and time-to-event data: an overview. Stat Sin. 2004;14:809-834.
  10. Wu L, Liu W, Hu X. Joint inference on HIV viral dynamics and immune suppression in presence of measurement errors. Biometrics. 2010;66(2):327-335.
  11. Albert PS, Shih JH. An approach for jointly modeling multivariate longitudinal measurements and discrete time-to-event data. Ann Appl Stat. 2010;4(3):1517-1532.
  12. Arellano-Valle RB, Genton MG. On fundamental skew distributions. J Multivar Anal. 2005;96(1):93-116.
  13. Azzalini A, Capitanio A. Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t-distribution. J R Stat Soc Series B Stat Methodol. 2003;65(2):367-389.
  14. Huang Y, Dagne GA, Zhou S, et al. Piecewise mixed-effects models with skew distributions for evaluating viral load changes: a Bayesian approach. Stat Methods Med Res. 2015;24(6):730-746.
  15. Sahu SK, Dey DK, Branco MD. A new class of multivariate skew distributions with applications to Bayesian regression models. Can J Stat. 2003;31(2):129-150.
  16. Huang Y. Quantile regression-based Bayesian semiparametric mixed-effects models for longitudinal data with non-normal, missing and mismeasured covariate. J Stat Comput Simul. 2016;86(6):1183-1202.
  17. Douglas JA. Item response models for longitudinal quality of life data in clinical trials. Stat Med. 1999;18(21):2917-2931.
  18. Glas CA, Geerlings H, van de Laar MA, et al. Analysis of longitudinal randomized clinical trials using item response models. Contemp Clin Trials. 2009;30(2):158-170.
  19. He B, Luo S. Joint modeling of multivariate longitudinal measurements and survival data with applications to parkinson's disease. Stat Methods Med Res. 2016;25(4):1346-1358.
  20. Wang C, Douglas J, Anderson S. Item response models for joint analysis of quality of life and survival. Stat Med. 2002;21(1):129-142.
  21. Adams RJ, Wilson M, Wu M. Multilevel item response models: an approach to errors in variables regression. J Educ Behav Stat. 1997;22(1):47-76.
  22. Andersen EB. Latent regression analysis based on the rating scale model. Psychol Sci. 2004;46:209-226.
  23. Mislevy RJ. Estimation of latent group effects. J Am Stat Assoc. 1985;80(392):993-997.
  24. Fox JP. Multilevel IRT using dichotomous and polytomous response data. Br J Math Stat Psychol. 2005;58(1):145-172.
  25. Kamata A. Item analysis by the hierarchical generalized linear model. J Educ Meas. 2001;38(1):79-93.
  26. Maier KS. A rasch hierarchical measurement model. J Educ Behav Stat. 2001;26(3):307-330.
  27. Fox J. Bayesian Item Response Modeling: Theory and Applications. New York, USA: Springer-Verlag; 2010.
  28. Fox JP, Glas CA. Bayesian estimation of a multilevel IRT model using gibbs sampling. Psychometrika. 2001;66(2):271-288.
  29. Huang Y, Chen J, Xu L, et al. Bayesian MLIRT-based joint models for multivariate longitudinal and survival data with multiple features. J of Med Stat Inform. 2021;9(4):1-14.
  30. Hung LF, Wang WC. The generalized multilevel facets model for longitudinal data. J Educ Behav Stat. 2012;37(2):231-255.
  31. Luo S. A Bayesian approach to joint analysis of multivariate longitudinal data and parametric accelerated failure time. Stat Med. 2014;33(4):580-594.
  32. Natesan P, Limbers C, Varni JW. Bayesian estimation of graded response multilevel models using gibbs sampling: formulation and illustration. Educ Psychol Meas. 2010;70(3):420-439.
  33. Lord F, Novick M, Birnbaum A. Statistical Theories of Mental Test Scores. Boston, MA: Addison-Wesley; 1968.
  34. Chen J, Huang Y. A Bayesian mixture of semiparametric mixed-effects joint models for skewed-longitudinal and time-to-event data. Stat Med. 2015;34(20):2820-2843.
  35. Zhang H, Huang Y. Bayesian joint modeling for partially linear mixed-effects quantile regression of longitudinal and time-to-event data with limit of detection, covariate measurement errors and skewness. J Biopharm Stat. 2021;31(3):295-316.
  36. O'Brien LM, Fitzmaurice GM. Analysis of longitudinal multiple-source binary data using generalized estimating equations. J R Stat Soc Ser C Appl Stat. 2004;53(1):177-193.
  37. Little RJ, Rubin DB. Statistical Analysis with Missing Data. Hoboken, NJ: John Wiley & Sons; 2014.
  38. Huang Y, Dagne G. Bayesian semiparametric nonlinear mixed-effects joint models for data with skewness, missing responses, and measurement errors in covariates. Biometrics. 2012;68(3):943-953.
  39. Liu W, Wu L. Simultaneous inference for semiparametric nonlinear mixed-effects models with covariate measurement errors and missing responses. Biometrics. 2007;63(2):342-350.
  40. Curtis S. Bugs code for item response theory. J Stat Softw. 2010;36:1-34.
  41. Tong P, Coombes KR. Integirty: a method to identify genes altered in cancer by accounting for multiple mechanisms of regulation using item response theory. Bioinformatics. 2012;28(22):2861-2869.
  42. Davidian M, Giltinan DM. Nonlinear Models for Repeated Measurement Data. Vol 62. New York: CRC Press; 1995.
  43. Wulfsohn MS, Tsiatis AA A joint model for survival and longitudinal data measured with error. Biometrics. 1997;53:330-339.
  44. Huang Y, Chen J. Bayesian quantile regression-based nonlinear mixed-effects joint models for time-to-event and longitudinal data with multiple features. Stat Med. 2016;35(30):5666-5685.
  45. Clayton DG. A Monte Carlo method for Bayesian inference in frailty models. Biometrics. 1991;47:467-485.
  46. Chen J, Huang Y, Tang NS. Bayesian change-point joint models for multivariate longitudinal and time-to-event data. Stat Biopharm Res. 2022;14(2):227-241.
  47. Rizopoulos D. JM: an R package for the joint modelling of longitudinal and time-to-event data. J Stat Softw. 2010;35(9):1-33.
  48. Brown ER, Ibrahim JG. A Bayesian semiparametric joint hierarchical model for longitudinal and survival data. Biometrics. 2003;59(2):221-228.
  49. Fleming T, Harrington D. Counting Processes and Survival Analysis. Hoboken, NJ: John Wiley & Sons; 1991.
  50. Gordon RD, Iwatsuki S, Tzakis AG, et al. The Denver-Pittsburgh liver transplant series. Clin Transpl. 1987; Chapter 7;1:43-49.
  51. Andrinopoulou ER, Rizopoulos D. Bayesian shrinkage approach for a joint model of longitudinal and survival outcomes assuming different association structures. Stat Med. 2016;35(26):4813-4823.
  52. Crowther MJ, Abrams KR, Lambert PC. Joint modeling of longitudinal and survival data. Stata J. 2013;13(1):165-184.
  53. Gelman A, Rubin DB. Inference from iterative simulation using multiple sequences. Stat Sci. 1992;7(4):457-472.

MeSH Term

Humans
HIV Infections
Models, Statistical
Bayes Theorem
Longitudinal Studies
Viral Load

Word Cloud

Created with Highcharts 10.0.0modellongitudinaldatamayjointmodelssurvivaldistributionmixedtypesmultipleBayesianstatisticalinferenceoftenignoringmissingnonignorableitemresponsetheoryMLIRTclinicalstudiesskew-tapproachmultivariateJointactivearearesearchmostlycoupledbiomarker-basedmixed-effectsnormaleventtime-basedpracticehoweverfollowingissuesstandout:NormalityerrorroutineassumptionunrealisticallyviolatingfeaturessubjectvariationsiiDatacollectedfeaturedoutcomessignificantlycorrelatedcorrelationleadbiasedestimationAdditionallyparametricspecificationinflexiblecapturecomplicatedpatternsiiiMissingobservationsencounteredmeasureslikelyinformativephenomenonresultinaccurateMultilevelincreasinglyusedanalyzeiecontinuouscategoricalarticledevelopMLIRT-basedsemiparametricconsistsextendedCoxproportionalhazardslinkedrandom-effectsemployedmodelingSimulationconductedassessperformanceproposedmethodrealexampleprimarybiliarycirrhosisstudyanalyzedestimateparametersalsoevaluatesensitivityparameterestimatesvariousplausiblemechanismsSemiparametricskewed-longitudinaldata:analysisMarkovchainMonteCarlolongitudinal-survivalmultilevel

Similar Articles

Cited By