Transient Dynamic Operation of G-Quadruplex-Gated Glucose Oxidase-Loaded ZIF-90 Metal-Organic Framework Nanoparticle Bioreactors.
Yunlong Qin, Yu Ouyang, Jianbang Wang, Xinghua Chen, Yang Sung Sohn, Itamar Willner
Author Information
Yunlong Qin: The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
Yu Ouyang: The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel. ORCID
Jianbang Wang: The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
Xinghua Chen: The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
Yang Sung Sohn: The Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
Itamar Willner: The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel. ORCID
中文译文
English
Glucose oxidase-loaded ZIF-90 metal-organic framework nanoparticles conjugated to hemin-G-quadruplexes act as functional bioreactor hybrids operating transient dissipative biocatalytic cascaded transformations consisting of the glucose-driven HO-mediated oxidation of Amplex-Red to resorufin or the glucose-driven generation of chemiluminescence by the HO-mediated oxidation of luminol. One system involves the fueled activation of a reaction module leading to the temporal formation and depletion of the bioreactor conjugate operating the nickase-guided transient biocatalytic cascades. The second system demonstrates the fueled activation of a reaction module yielding a bioreactor conjugate operating the exonuclease III-dictated transient operation of the two biocatalytic cascades. The temporal operations of the bioreactor circuits are accompanied by kinetic models and computational simulations enabling us to predict the dynamic behavior of the systems subjected to different auxiliary conditions.
ACS Appl Mater Interfaces. 2017 Mar 22;9(11):10027-10033
[PMID: 28244734 ]
J Am Chem Soc. 2020 Sep 9;142(36):15569-15574
[PMID: 32790301 ]
Angew Chem Int Ed Engl. 2017 Dec 11;56(50):16082-16085
[PMID: 29119659 ]
Nat Commun. 2021 Aug 26;12(1):5132
[PMID: 34446724 ]
J Am Chem Soc. 2021 Oct 27;143(42):17622-17632
[PMID: 34643387 ]
Nano Lett. 2017 Mar 8;17(3):2043-2048
[PMID: 28183178 ]
Chem Rev. 2019 May 22;119(10):6326-6369
[PMID: 30714375 ]
ACS Appl Mater Interfaces. 2013 Feb;5(4):1503-9
[PMID: 23369297 ]
Chem Commun (Camb). 2014 Aug 21;50(65):9196-9
[PMID: 24995435 ]
Acc Chem Res. 2014 Jun 17;47(6):1663-72
[PMID: 24617966 ]
Nanoscale. 2018 Mar 8;10(10):4607-4641
[PMID: 29465723 ]
Angew Chem Int Ed Engl. 2019 Apr 16;58(17):5582-5586
[PMID: 30715777 ]
Chem Rev. 2017 Oct 25;117(20):12584-12640
[PMID: 28605177 ]
Chem Soc Rev. 2022 Aug 30;51(17):7631-7661
[PMID: 35975685 ]
Angew Chem Int Ed Engl. 2020 Sep 21;59(39):17250-17255
[PMID: 32558982 ]
J Am Chem Soc. 2008 Dec 24;130(51):17224-5
[PMID: 19049271 ]
Nat Nanotechnol. 2012 Aug;7(8):530-5
[PMID: 22751222 ]
Curr Opin Biotechnol. 2010 Aug;21(4):376-91
[PMID: 20727732 ]
J Mater Chem B. 2020 Aug 26;8(33):7548-7556
[PMID: 32716461 ]
Chem Sci. 2021 Jul 20;12(33):11204-11212
[PMID: 34522318 ]
Chemistry. 2012 Mar 26;18(13):3992-9
[PMID: 22337073 ]
Sci Adv. 2019 Jul 19;5(7):eaaw0590
[PMID: 31334349 ]
Anal Chem. 2012 Jun 5;84(11):4789-97
[PMID: 22540661 ]
Adv Mater. 2016 Feb 17;28(7):1387-93
[PMID: 26643597 ]
ACS Nano. 2014 May 27;8(5):5182-9
[PMID: 24702461 ]
Angew Chem Int Ed Engl. 2015 Jan 19;54(4):1098-129
[PMID: 25521588 ]
Angew Chem Int Ed Engl. 2023 Apr 24;62(18):e202215332
[PMID: 36651472 ]
J Am Chem Soc. 2019 Oct 2;141(39):15567-15576
[PMID: 31478647 ]
Angew Chem Int Ed Engl. 2009;48(42):7818-21
[PMID: 19746491 ]
ACS Appl Mater Interfaces. 2022 Dec 21;14(50):55365-55375
[PMID: 36475576 ]
Science. 2007 Nov 16;318(5853):1121-5
[PMID: 18006742 ]
ACS Nano. 2017 Mar 28;11(3):3247-3253
[PMID: 28234445 ]
ACS Nano. 2018 Aug 28;12(8):7538-7545
[PMID: 29969227 ]
Small. 2018 Mar;14(13):e1703710
[PMID: 29430831 ]
J Am Chem Soc. 2019 Jan 16;141(2):1091-1099
[PMID: 30540450 ]
Nat Nanotechnol. 2007 Sep;2(9):577-83
[PMID: 18654371 ]
Chem Commun (Camb). 2014 Oct 4;50(76):11147-50
[PMID: 25109366 ]
Nano Lett. 2013 Mar 13;13(3):1298-302
[PMID: 23421921 ]
Adv Sci (Weinh). 2020 Nov 09;7(24):2001766
[PMID: 33344121 ]
Chem Commun (Camb). 2010 Apr 28;46(16):2736-8
[PMID: 20369166 ]
J Mater Chem B. 2020 Oct 21;8(40):9295-9303
[PMID: 32959035 ]
Chem Rev. 2023 May 24;123(10):6839-6887
[PMID: 37078690 ]
Acc Chem Res. 2017 Apr 18;50(4):680-690
[PMID: 28248486 ]
Small. 2018 Feb;14(5):
[PMID: 29205812 ]
Nat Nanotechnol. 2015 Feb;10(2):111-9
[PMID: 25652169 ]
Biosens Bioelectron. 2022 Dec 15;218:114768
[PMID: 36240630 ]
Chem Rev. 2019 Mar 27;119(6):4357-4412
[PMID: 30801188 ]
Nat Chem. 2021 Sep;13(9):843-849
[PMID: 34373598 ]
J Mater Chem B. 2016 Dec 14;4(46):7423-7428
[PMID: 32263743 ]
Chem Soc Rev. 2017 May 9;46(9):2543-2554
[PMID: 28418049 ]
Chem Commun (Camb). 2008 Oct 21;(39):4825-7
[PMID: 18830506 ]
Sci Adv. 2022 May 6;8(18):eabn3534
[PMID: 35522744 ]
Chem Soc Rev. 2008 Jan;37(1):101-8
[PMID: 18197336 ]
Chem Soc Rev. 2019 Jul 15;48(14):3683-3704
[PMID: 31119258 ]
Nat Nanotechnol. 2011 Nov 06;6(12):763-72
[PMID: 22056726 ]
Nat Nanotechnol. 2007 May;2(5):275-84
[PMID: 18654284 ]
J Am Chem Soc. 2021 Aug 4;143(30):11510-11519
[PMID: 34286967 ]
Small. 2022 Mar;18(11):e2104420
[PMID: 35037383 ]
Nature. 1995 Mar 23;374(6520):381-6
[PMID: 7885481 ]
Nat Nanotechnol. 2012 Jun 17;7(7):459-64
[PMID: 22706697 ]
Acc Chem Res. 2019 Aug 20;52(8):2190-2200
[PMID: 31276379 ]
Chem Rev. 2014 Mar 12;114(5):2881-941
[PMID: 24576227 ]
Small. 2019 Apr;15(17):e1900935
[PMID: 30920730 ]
J Am Chem Soc. 2006 Feb 22;128(7):2172-3
[PMID: 16478145 ]
Langmuir. 2018 Dec 11;34(49):14692-14710
[PMID: 29870667 ]
Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7276-80
[PMID: 1871133 ]
Biomater Sci. 2019 Jun 25;7(7):2740-2748
[PMID: 30994642 ]
ACS Nano. 2022 Apr 26;16(4):6153-6164
[PMID: 35294174 ]
J Am Chem Soc. 2011 Aug 3;133(30):11686-91
[PMID: 21662240 ]
Sci Adv. 2022 Aug 19;8(33):eabq5947
[PMID: 35977022 ]
Angew Chem Int Ed Engl. 2020 Jul 13;59(29):12084-12092
[PMID: 32232894 ]
Angew Chem Int Ed Engl. 2022 Mar 1;61(10):e202113477
[PMID: 35026052 ]
Chem Commun (Camb). 2010 Nov 14;46(42):8017-9
[PMID: 20871928 ]
Chem Commun (Camb). 2015 Apr 28;51(33):7100-3
[PMID: 25658236 ]
Angew Chem Int Ed Engl. 2020 Sep 1;59(36):15342-15377
[PMID: 31730715 ]
Nat Nanotechnol. 2021 Oct;16(10):1057-1067
[PMID: 34625723 ]
J Am Chem Soc. 2021 Apr 7;143(13):5071-5079
[PMID: 33755445 ]
Anal Chem. 2004 Apr 1;76(7):2152-6
[PMID: 15053684 ]
Chem Soc Rev. 2021 Apr 7;50(7):4541-4563
[PMID: 33625421 ]
J Am Chem Soc. 2019 Oct 30;141(43):17189-17197
[PMID: 31539231 ]
Glucose Oxidase
DNA, Catalytic
Metal-Organic Frameworks
G-Quadruplexes
Hydrogen Peroxide
Glucose
Nanoparticles
Bioreactors
Hemin
Biosensing Techniques
Glucose Oxidase
DNA, Catalytic
Metal-Organic Frameworks
Hydrogen Peroxide
ZIF-90
Glucose
Hemin