Air pollution forecasting based on wireless communications: review.

Muthna J Fadhil, Sadik Kamel Gharghan, Thamir R Saeed
Author Information
  1. Muthna J Fadhil: Department of Electrical Engineering, University of Technology, Baghdad, Iraq. eee.20.12@grad.uotechnology.edu.iq.
  2. Sadik Kamel Gharghan: Middle Technical University, Electrical Engineering Technical College, Baghdad, Iraq.
  3. Thamir R Saeed: Department of Electrical Engineering, University of Technology, Baghdad, Iraq.

Abstract

The development of contemporary artificial intelligence (AI) methods such as artificial neural networks (ANNs) has given researchers around the world new opportunities to address climate change and air quality issues. The small size, low cost, and low power consumption of sensors can facilitate obtaining the values of polluting gases in the atmosphere. However, several problems with using air pollution technique relate to various effects such as sensing accuracy, sensor drifts, and sluggish reactions to changes in pollution levels. Recently, machine learning has made it feasible to build a more intelligent, context-aware system that can anticipate events and monitor present conditions. This paper focuses on the use of environment sensors for detecting air pollution based on several types of wireless protocols, including Wi-Fi, Bluetooth, ZigBee, LoRa, Global Positioning System (GPS), and 4G/5G. Furthermore, it classifies previous published articles on the topic according to the wireless protocol and compared in terms of several performance metrics such as the adopted air pollution sensors, hardware platform, adopted algorithm, power consumption or power savings, and sensing accuracy. In addition, this work highlights the challenges and limitations facing drones during their mission for detecting air pollution. As a result, we suggest to build and implement at base station an intelligent system based on backpropagation (BP) neural networks, which provides flexibility to track and predict the true values of polluting gases in the atmosphere to overcome the above problems. Finally, this work addresses the advantages of using drones in the air pollution field.

Keywords

References

  1. Abid, F. (2021). A survey of machine learning algorithms based forest fires prediction and detection systems. Fire Technology, 57, 559–590. https://doi.org/10.1007/s10694-020-01056-z [DOI: 10.1007/s10694-020-01056-z]
  2. Afshar-Mohajer, N., & Chang-Yu, W. (2023). Use of a drone-based sensor as a field-ready technique for short-term concentration mapping of air pollutants: A modeling study. Atmospheric Environment, 294, 119476. [DOI: 10.1016/j.atmosenv.2022.119476]
  3. Ahmed, R., Chen, Y., & Hassan, B. (2022). Deep residual learning-based cognitive model for detection and classification of transmitted signal patterns in 5G smart city networks. Digital Signal Processing, 120, 103290. https://doi.org/10.1016/j.dsp.2021.103290 [DOI: 10.1016/j.dsp.2021.103290]
  4. Al Rasyid, M. U. H., Nadhori, I. U., Sudarsono, A., & Alnovinda, Y. T. (2016). Pollution monitoring system using gas sensor based on wireless sensor network. International Journal of Engineering and Technology Innovation, 6, 79.
  5. Alapuranen, P., & Schroeder, J. (2021). Complex artificial neural network with applications to wireless communications. Digital Signal Processing, 119, 103194. https://doi.org/10.1016/j.dsp.2021.103194 [DOI: 10.1016/j.dsp.2021.103194]
  6. Alhmiedat, T. (2017). Low-power environmental monitoring system for ZigBee wireless sensor network. KSII Transactions on Internet and Information Systems (TIIS), 11, 4781–4803. https://doi.org/10.3837/tiis.2017.10.006 [DOI: 10.3837/tiis.2017.10.006]
  7. Ali, A., & Zorlu, S. (2022). Development and performance analysis of a ZigBee and LoRa-based smart building sensor network. Frontiers in Energy Research, 10, 933743. https://doi.org/10.3389/fenrg.2022.933743 [DOI: 10.3389/fenrg.2022.933743]
  8. Ali, S., Glass, T., Parr, B., Potgieter, J., & Alam, F. (2020). Low cost sensor with IoT LoRaWAN connectivity and machine learning-based calibration for air pollution monitoring. IEEE Transactions on Instrumentation and Measurement, 70, 1–11. https://doi.org/10.1109/TIM.2020.3034109 [DOI: 10.1109/TIM.2020.3034109]
  9. Almalawi, A., et al. (2022). An IoT based system for magnify air pollution monitoring and prognosis using hybrid artificial intelligence technique. Environmental Research, 206, 112576. https://doi.org/10.1016/j.envres.2021.112576 [DOI: 10.1016/j.envres.2021.112576]
  10. Almalki, A., et al. (2022). Utilizing artificial intelligence and lotus effect in an emerging intelligent drone for persevering solar panel efficiency. Wireless Communications and Mobile Computing, 12, 7741535. https://doi.org/10.1155/2022/7741535 [DOI: 10.1155/2022/7741535]
  11. Al-Mihrab, M. A., Salim, A. J., & Ali, J. K. (2020). A compact multiband printed monopole antenna with hybrid polarization radiation for GPS, LTE, and satellite applications. IEEE Access, 8, 110371–110380. https://doi.org/10.1109/ACCESS.2020.3000436 [DOI: 10.1109/ACCESS.2020.3000436]
  12. Alvarado, M., Gonzalez, F., Erskine, P., Cliff, D., & Heuff, D. (2017). A methodology to monitor airborne PM10 dust particles using a small unmanned aerial vehicle. Sensors, 17, 343. https://doi.org/10.3390/s17020343 [DOI: 10.3390/s17020343]
  13. Alvear, O., Calafate, C. T., Zema, N. R., Natalizio, E., Hernández-Orallo, E., Cano, J. C., et al. (2018). A discretized approach to air pollution monitoring using UAV-based sensing. Mobile Networks and Applications, 23, 1693–1702. https://doi.org/10.1007/s11036-018-1065-4 [DOI: 10.1007/s11036-018-1065-4]
  14. Alvear, O., Zema, N. R., Natalizio, E., & Calafate, C. T. (2017). Using UAV-based systems to monitor air pollution in areas with poor accessibility. Journal of Advanced Transportation, 2017. https://doi.org/10.1155/2017/8204353
  15. Amuthadevi, C., Vijayan, D. S., & Ramachandran, V. (2021). Development of air quality monitoring (AQM) models using different machine learning approaches. Journal of Ambient Intelligence and Humanized Computing, 1–13. https://doi.org/10.1007/s12652-020-02724-2
  16. Arroyo, P., Herrero, J. L., Lozano, J., & Montero, P. (2022). Integrating LoRa-based communications into unmanned aerial vehicles for data acquisition from terrestrial beacons. Electronics, 11, 1865. https://doi.org/10.3390/electronics11121865 [DOI: 10.3390/electronics11121865]
  17. Arroyo, P., Herrero, J. L., Suárez, J. I., & Lozano, J. (2019). Wireless sensor network combined with cloud computing for air quality monitoring. Sensors, 19, 691. https://doi.org/10.3390/s19030691 [DOI: 10.3390/s19030691]
  18. Arroyo, P., Lozano, J., Suárez, J. I., Herrero, J. L., & Carmona, P. (2016). Wireless sensor network for air quality monitoring and control. Chemical Engineering Transactions, 54, 217–222. https://doi.org/10.3303/CET1654037 [DOI: 10.3303/CET1654037]
  19. Arroyo, P., Meléndez, F., Suárez, J. I., Herrero, J. L., Rodríguez, S., & Lozano, J. (2020). Electronic nose with digital gas sensors connected via Bluetooth to a smartphone for air quality measurements. Sensors, 20, 786. https://doi.org/10.3390/s20030786 [DOI: 10.3390/s20030786]
  20. Asha, P., et al. (2022). IoT enabled environmental toxicology for air pollution monitoring using AI techniques. Environmental Research, 205, 112574. https://doi.org/10.1016/j.envres.2021.112574 [DOI: 10.1016/j.envres.2021.112574]
  21. Awadallah, S., Moure, D., & Torres-González, P. (2019). An internet of things (IoT) application on volcano monitoring. Sensors, 19, 4651. https://doi.org/10.3390/s19214651 [DOI: 10.3390/s19214651]
  22. Ayoub, W., Samhat, A. E., Nouvel, F., Mroue, M., & Prévotet, J.-C. (2018). Internet of mobile things: Overview of lorawan, dash7, and nb-iot in lpwans standards and supported mobility. IEEE Communications Surveys & Tutorials, 21, 1561–1581. https://doi.org/10.1109/COMST.2018.2877382 [DOI: 10.1109/COMST.2018.2877382]
  23. Ayus, I., et al. (2023). Comparison of machine learning and deep learning techniques for the prediction of air pollution: a case study from China. Asian Journal of Atmospheric Environment, 17, 4. https://doi.org/10.1007/s44273-023-00005-w [DOI: 10.1007/s44273-023-00005-w]
  24. Bacco, M., Delmastro, F., Ferro, E., & Gotta, A. (2017). Environmental monitoring for smart cities. IEEE Sensors Journal, 17, 7767–7774. https://doi.org/10.48550/arXiv.2205.1514 [DOI: 10.48550/arXiv.2205.1514]
  25. Baranov, A., Spirjakin, D., Akbari, S., Somov, A., & Passerone, R. (2016). POCO: ‘Perpetual’ operation of CO wireless sensor node with hybrid power supply. Sensors and Actuators A: Physical, 238, 112–121. https://doi.org/10.1016/j.sna.2015.12.004 [DOI: 10.1016/j.sna.2015.12.004]
  26. Behal, V., & Singh, R. (2021). Personalised healthcare model for monitoring and prediction of airpollution: Machine learning approach. Journal of Experimental & Theoretical Artificial Intelligence, 33, 425–449. https://doi.org/10.1080/0952813X.2020.1744197 [DOI: 10.1080/0952813X.2020.1744197]
  27. Benammar, M., Abdaoui, A., Ahmad, S. H., Touati, F., & Kadri, A. (2018). A modular IoT platform for real-time indoor air quality monitoring. Sensors, 18, 581. https://doi.org/10.3390/s18020581 [DOI: 10.3390/s18020581]
  28. Beryozkina, S., & Al-Shakhs, N. (2020). Real-life application of the emission monitoring system by using a drone. In 2020 IEEE International Conference on Environment and Electrical Engineering and 2020 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe) (pp. 1–6). https://doi.org/10.1109/EEEIC/ICPSEurope49358.2020.9160738 [DOI: 10.1109/EEEIC/ICPSEurope49358.2020.9160738]
  29. Betta, G., Cerro, G., Ferdinandi, M., Ferrigno, L., & Molinara, M. (2019). Contaminants detection and classification through a customized IoT-based platform: A case study. IEEE Instrumentation & Measurement Magazine, 22, 35–44. https://doi.org/10.1109/MIM.2019.8917902 [DOI: 10.1109/MIM.2019.8917902]
  30. Bokhari, S. A. A., & Myeong, S. (2022). Use of artificial intelligence in smart cities for smart decision-making: A social innovation perspective. Sustainability, 14, 620. https://doi.org/10.3390/su14020620 [DOI: 10.3390/su14020620]
  31. Bolaji, A. (2023). Construction and case analysis of sensor news whole chain production model based on artificial intelligence technology. Journal of Sensors, 2023, 9428766. https://doi.org/10.1155/2023/9428766 [DOI: 10.1155/2023/9428766]
  32. Bolla, G. M., Casagrande, M., Comazzetto, A., Moro, R. D., Destro, M., Fantin, E., et al. (2018). ARIA: Air pollutants monitoring using UAVs. 2018 5th IEEE International Workshop on Metrology for AeroSpace (MetroAeroSpace), 225–229. https://doi.org/10.1109/MetroAeroSpace.2018.8453584
  33. Bravo-Arrabal, J., Fernandez-Lozano, J., Serón, J., Gomez-Ruiz, J. A., & García-Cerezo, A. (2021). Development and implementation of a hybrid wireless sensor network of low power and long range for urban environments. Sensors, 21, 567. https://doi.org/10.3390/s21020567 building sensor network. Frontiers in Energy Research, 10, 933743. [DOI: 10.3390/s21020567]
  34. Burgués, J., Hernández, V., Lilienthal, A. J., & Marco, S. (2019). Smelling nano aerial vehicle for gas source localization and mapping. Sensors, 19, 478. https://doi.org/10.3390/s19030478 [DOI: 10.3390/s19030478]
  35. Camarillo-Escobedo, R., Flores, J. L., Marin-Montoya, P., García-Torales, G., & Camarillo-Escobedo, J. M. (2022). Smart multi-sensor system for remote air quality monitoring using unmanned aerial vehicle and LoRaWAN. Sensors, 22, 1706. https://doi.org/10.3390/s22051706 [DOI: 10.3390/s22051706]
  36. Casanova-Cháfer, J., Navarrete, E., Noirfalise, X., Umek, P., Bittencourt, C., & Llobet, E. (2018). Gas sensing with iridium oxide nanoparticle decorated carbon nanotubes. Sensors, 19, 113. https://doi.org/10.3390/s19010113 [DOI: 10.3390/s19010113]
  37. Catini, A., Papale, L., Capuano, R., Pasqualetti, V., Giuseppe, D. D., Brizzolara, S., et al. (2019). Development of a sensor node for remote monitoring of plants. Sensors, 19, 4865. https://doi.org/10.3390/s19224865 [DOI: 10.3390/s19224865]
  38. Cavaliere, A., Carotenuto, F., Gennaro, F. D., Gioli, B., Gualtieri, G., Martelli, F., et al. (2018). Development of low-cost air quality stations for next generation monitoring networks: Calibration and validation of PM2. 5 and PM10 sensors. Sensors, 18, 2843. https://doi.org/10.3390/s18092843 [DOI: 10.3390/s18092843]
  39. Chadha, J., et al. (2022). Artificial intelligence techniques in wireless sensor networks for accurate localization of user in floor, building and indoor area. Multimed Tools Appl, 81, 31261–31294. https://doi.org/10.1007/s11042-022-12979-w [DOI: 10.1007/s11042-022-12979-w]
  40. Chaudhari, B. S., Zennaro, M., & Borkar, S. (2020). LPWAN technologies: Emerging application characteristics, requirements, and design considerations. Future Internet, 12, 46. https://doi.org/10.3390/fi12030046 [DOI: 10.3390/fi12030046]
  41. Chen, C.-J., Chen, J.-A., & Huang, Y.-M. (2017). Intelligent environmental sensing with an unmanned aerial system in a wireless sensor network. International Journal on Smart Sensing & Intelligent Systems, 10. https://doi.org/10.21307/ijssis-2017-230
  42. Cheung, W.-F., Lin, T.-H., & Lin, Y.-C. (2018). A real-time construction safety monitoring system for hazardous gas integrating wireless sensor network and building information modeling technologies. Sensors, 18, 436. https://doi.org/10.3390/s18020436 [DOI: 10.3390/s18020436]
  43. Choi, S., Park, K., Lee, S., Lim, Y., Oh, B., Chae, H. Y., et al. (2018). A three-step resolution-reconfigurable hazardous multi-gas sensor interface for wireless air-quality monitoring applications. Sensors, 18, 761. https://doi.org/10.3390/s18030761 [DOI: 10.3390/s18030761]
  44. Christakis, I., Tsakiridis, O., Kandris, D., & Stavrakas, I. (2023). Air pollution monitoring via wireless sensor networks: The investigation and correction of the aging behavior of electrochemical gaseous pollutant sensors. Electronics, 12, 1842. https://doi.org/10.3390/electronics12081842 [DOI: 10.3390/electronics12081842]
  45. Clements, A. L., Griswold, W. G., Rs, A., Johnston, J. E., Herting, M. M., Thorson, J., et al. (2017). Low-cost air quality monitoring tools: From research to practice (a workshop summary). Sensors, 17, 2478. https://doi.org/10.3390/s17112478 [DOI: 10.3390/s17112478]
  46. Cozma, A., Firculescu, A.-C., Tudose, D., & Ruse, L. (2022). Autonomous multi-rotor aerial platform for air pollution monitoring. Sensors, 22, 860. https://doi.org/10.3390/s22030860 [DOI: 10.3390/s22030860]
  47. Cugurullo, F. (2020). Urban artificial intelligence: From automation to autonomy in the smart city. Frontiers in Sustainable Cities, 2, 38. https://doi.org/10.3389/frsc.2020.00038 [DOI: 10.3389/frsc.2020.00038]
  48. da Silva, Sousa D., Leal, V. G., dos Reis, G. T., da Silva, S. G., Cardoso, A. A., & da Silveira Petruci, J. F. (2022). An automated, self-powered, and integrated analytical platform for on-line and in situ air auality monitoring. Chemosensors, 10(11), 454. https://doi.org/10.3390/chemosensors10110454 [DOI: 10.3390/chemosensors10110454]
  49. De Palo, R., et al. (2023). Quartz-enhanced photoacoustic sensors for detection of eight air pollutants. Advanced Photonics Research, 2200353. https://doi.org/10.1002/adpr.202200353
  50. De, S., & Chakraborty, B. (2021). An energy-efficient wireless sensor network construction algorithm for air quality condition detection system. Computers & Electrical Engineering, 91, 107064. https://doi.org/10.1016/j.compeleceng.2021.107064 [DOI: 10.1016/j.compeleceng.2021.107064]
  51. Deep, B., Mathur, I., & Joshi, N. (2020). Coalescing IoT and Wi-Fi technologies for an optimized approach in urban route planning. Environmental Science and Pollution Research, 27, 34434–34441. https://doi.org/10.1007/s11356-020-09477-7 [DOI: 10.1007/s11356-020-09477-7]
  52. Dessimond, B., Annesi-Maesano, I., Pepin, J. L., Srairi, S., & Pau, G. (2021). Academically produced air pollution sensors for personal exposure assessment: The canarin project. Sensors, 21(5), 1876. [DOI: 10.3390/s21051876]
  53. Devkota, J., Greve, D. W., Hong, T., Kim, K.-J., & Ohodnicki, P. R. (2020). An 860 MHz wireless surface acoustic wave sensor with a metal-organic framework sensing layer for CO 2 and CH 4. IEEE Sensors Journal, 20, 9740–9747. https://doi.org/10.1109/JSEN.2020.2990997 [DOI: 10.1109/JSEN.2020.2990997]
  54. Duangsuwan, S., & Jamjareekulgarn, P. (2020). Development of drone real-time air pollution monitoring for mobile smart sensing in areas with poor accessibility. Sensors and Materials, 32, 511–520. https://doi.org/10.18494/SAM.2020.2450 [DOI: 10.18494/SAM.2020.2450]
  55. Egbueri, J. C. (2021). Prediction modeling of potentially toxic elements’ hydrogeopollution using an integrated Q-mode HCs and ANNs machine learning approach in SE Nigeria. Environ Sci Pollut Res, 28, 40938–40956. https://doi.org/10.1007/s11356-021-13678-z [DOI: 10.1007/s11356-021-13678-z]
  56. Ehteram, M., et al. (2023). Graph convolutional network – long short term memory neural network- multi layer perceptron- Gaussian progress regression model: A new deep learning model for predicting ozone concertation. Atmospheric Pollution Research, 14(6), 101766. https://doi.org/10.1016/j.apr.2023.101766 [DOI: 10.1016/j.apr.2023.101766]
  57. El Boudani, B., Kanaris, L., Kokkinis, A., Kyriacou, M., Chrysoulas, C., Stavrou, S., et al. (2020). Implementing deep learning techniques in 5G IoT networks for 3D indoor positioning: DELTA (DeEp Learning-Based Co-operaTive Architecture). Sensors, 20, 5495. https://doi.org/10.3390/s20195495 [DOI: 10.3390/s20195495]
  58. Fan, H., Bennetts, V. H., Schaffernicht, E., & Lilienthal, A. J. (2019). Towards gas discrimination and mapping in emergency response scenarios using a mobile robot with an electronic nose. Sensors, 19, 685. https://doi.org/10.3390/s19030685 [DOI: 10.3390/s19030685]
  59. Farhan, H. R., Al-Muifraje, M. H., & Saeed, T. R. (2020). A new model for pattern recognition. Computers & Electrical Engineering, 83, 106602. https://doi.org/10.1016/j.compeleceng.2020.106602 [DOI: 10.1016/j.compeleceng.2020.106602]
  60. Fazio, R. D., Dinoi, L. M., Vittorio, M. D., & Visconti, P. (2021). A sensor-based drone for pollutants detection in eco-friendly cities: Hardware design and data analysis application. Electronics, 11, 52. https://doi.org/10.3390/electronics11010052 [DOI: 10.3390/electronics11010052]
  61. Ferrer-Cid, P., et al. (2022). Volterra graph-based outlier detection for air pollution sensor networks. IEEE Transactions on Network Science and Engineering, 9(4), 2759–2771. [DOI: 10.1109/TNSE.2022.3169220]
  62. Fu, Z., Chen, Y., Ding, Y., & He, D. (2019). Pollution source localization based on multi-UAV cooperative communication. Ieee Access, 7, 29304–29312. https://doi.org/10.1109/ACCESS.2019.2900475 [DOI: 10.1109/ACCESS.2019.2900475]
  63. Gangwar, A., Singh, S., Mishra, R., et al. (2023). The state-of-the-art in air pollution monitoring and forecasting systems using IoT, big data, and machine learning. Wireless Personal Communications, 130, 1699–1729. https://doi.org/10.1007/s11277-023-10351-1 [DOI: 10.1007/s11277-023-10351-1]
  64. Ganji, A., et al. (2023). Design, calibration, and testing of a mobile sensor system for air pollution and built environment data collection: The urban scanner platform. Environmental Pollution, 317, 120720. [DOI: 10.1016/j.envpol.2022.120720]
  65. García, R. M., et al. (2022). Review of low-cost sensors for indoor air quality: Features and applications. Applied Spectroscopy Reviews, 57(9-10), 747–779. https://doi.org/10.1080/05704928.2022.2085734 [DOI: 10.1080/05704928.2022.2085734]
  66. Gautam, A., Verma, G., Qamar, S., & Shekhar, S. (2021). Vehicle pollution monitoring, control and challan system using MQ2 sensor based on internet of things. Wireless Personal Communications, 116, 1071–1085. https://doi.org/10.1007/s11277-019-06936-4 [DOI: 10.1007/s11277-019-06936-4]
  67. Ghorbel, M. B., Rodríguez-Duarte, D., Ghazzai, H., Hossain, M. J., & Menouar, H. (2019). Joint position and travel path optimization for energy efficient wireless data gathering using unmanned aerial vehicles. IEEE Transactions on Vehicular Technology, 68, 2165–2175. https://doi.org/10.1109/TVT.2019.2893374 [DOI: 10.1109/TVT.2019.2893374]
  68. Glass, T., Ali, S., Parr, B., Potgieter, J., & Alam, F. (2020). IoT enabled low cost air quality sensor. 2020 IEEE Sensors Applications Symposium (SAS), 1–6. https://doi.org/10.1109/SAS48726.2020.9220079
  69. González, E., Casanova-Chafer, J., Romero, A., Vilanova, X., Mitrovics, J., & Llobet, E. (2020). LoRa sensor network development for air quality monitoring or detecting gas leakage events. Sensors, 20, 6225. https://doi.org/10.3390/s20216225 [DOI: 10.3390/s20216225]
  70. Grace, R. K., & Manju, S. (2019). A comprehensive review of wireless sensor networks based air pollution monitoring systems. Wireless Personal Communications, 108, 2499–2515. https://doi.org/10.1007/s11277-019-06535-3 [DOI: 10.1007/s11277-019-06535-3]
  71. Granda, F., Azpilicueta, L., Vargas-Rosales, C., Lopez-Iturri, P., Aguirre, E., Astrain, J. J., et al. (2017). Spatial characterization of radio propagation channel in urban vehicle-to-infrastructure environments to support WSNS deployment. Sensors, 17, 1313. https://doi.org/10.3390/s17061313 [DOI: 10.3390/s17061313]
  72. Gryech, I., Ben-Aboud, Y., Guermah, B., Sbihi, N., Ghogho, M., & Kobbane, A. (2020). MoreAir: A low-cost urban air pollution monitoring system. Sensors, 20, 998. https://doi.org/10.3390/s20040998 [DOI: 10.3390/s20040998]
  73. Gu, Q., Michanowicz, D. R., & Jia, C. (2018). Developing a modular unmanned aerial vehicle (UAV) platform for air pollution profiling. Sensors, 18, 4363. https://doi.org/10.3390/s18124363 [DOI: 10.3390/s18124363]
  74. Gupta, S., et al. (2023). Prediction of air quality index using machine learning techniques: A comparative analysis. Journal of Environmental and Public Health, 2023, 4916267. https://doi.org/10.1155/2023/4916267 [DOI: 10.1155/2023/4916267]
  75. Haiahem, R., Minet, P., Boumerdassi, S., & Saidane, L. A. (2020). An orthogonal air pollution monitoring method (OAPM) Based on LoRaWAN. Journal of sensor and actuator networks, 9, 42. https://doi.org/10.3390/jsan9030042 [DOI: 10.3390/jsan9030042]
  76. Hammoodi, A. I., & Ali, J. K. (2020). Practical Bending studying on UWB pentagonal flexible antenna. 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, 413–414. https://doi.org/10.1109/IEEECONF35879.2020.9330309
  77. Han, Q., Liu, P., Zhang, H., & Cai, Z. (2019). A wireless sensor network for monitoring environmental quality in the manufacturing industry. IEEE Access, 7, 78108–78119. https://doi.org/10.1109/ACCESS.2019.2920838 [DOI: 10.1109/ACCESS.2019.2920838]
  78. Han, Y., Park, B., & Jeong, J. (2019). A novel architecture of air pollution measurement platform using 5G and blockchain for industrial IoT applications. Procedia Computer Science, 155, 728–733. https://doi.org/10.1016/j.procs.2019.08.105 [DOI: 10.1016/j.procs.2019.08.105]
  79. Hashemi Aslani, Z., Omidvar, B., & Karbassi, A. (2022). Integrated model for land-use transformation analysis based on multi-layer perception neural network and agent-based model. Environmental Science and Pollution Research, 29, 59770–59783. https://doi.org/10.1007/s11356-022-19392-8 [DOI: 10.1007/s11356-022-19392-8]
  80. Hashim, H. A., Mohammed, S. L., & Gharghan, S. K. (2018). Path loss model-based PSO for accurate distance estimation in indoor environments. Journal of Communications, 13, 712–722. https://doi.org/10.12720/jcm.13.12.712-722 [DOI: 10.12720/jcm.13.12.712-722]
  81. Hemamalini, R., et al. (2022). Air quality monitoring and forecasting using smart drones and recurrent neural network for sustainable development in Chennai city. Sustainable Cities and Society, 85, 104077. https://doi.org/10.1016/j.scs.2022.104077 [DOI: 10.1016/j.scs.2022.104077]
  82. Huang, J., et al. (2022). Field evaluation and calibration of low-cost air pollution sensors for environmental exposure research. Sensors, 22, 2381. https://doi.org/10.3390/s22062381 [DOI: 10.3390/s22062381]
  83. Idrees, Z., & Zheng, L. (2022). Low cost air pollution monitoring systems: A review of protocols and enabling technologies. Internet of Things, 19, 100540. https://doi.org/10.1016/j.iot.2022.100540 [DOI: 10.1016/j.iot.2022.100540]
  84. Idrees, Z., Zou, Z., & Zheng, L. (2018). Edge computing based IoT architecture for low cost air pollution monitoring systems: a comprehensive system analysis, design considerations & development. Sensors, 18, 3021. https://doi.org/10.3390/s18093021 [DOI: 10.3390/s18093021]
  85. Iqbal, M., Fuad, M., Sukoco, H., & Alatas, H. (2016). Hybrid tree-like mesh topology as new wireless sensor network platform. TELKOMNIKA Telecommunication, Computing, Electronics and Control, 14, 1166–1174. https://doi.org/10.12928/TELKOMNIKA.v14i3.2279 [DOI: 10.12928/TELKOMNIKA.v14i3.2279]
  86. Iskandaryan, D., Ramos, F., & Trilles, S. (2020). Air quality prediction in smart cities using machine learning technologies based on sensor data: A Review. Applied Sciences, 10, 2401. https://doi.org/10.3390/app10072401 [DOI: 10.3390/app10072401]
  87. Islam, N., Rashid, M. M., Pasandideh, F., Ray, B., Moore, S., & Kadel, R. (2021). A review of applications and communication technologies for internet of things (Iot) and unmanned aerial vehicle (uav) based sustainable smart farming. Sustainability, 13, 1821. https://doi.org/10.3390/su13041821 [DOI: 10.3390/su13041821]
  88. Jawad, A. M., Jawad, H. M., Nordin, R., Gharghan, S. K., Abdullah, N. F., & Abu-Alshaeer, M. J. (2019). Wireless power transfer with magnetic resonator coupling and sleep/active strategy for a drone charging station in smart agriculture. IEEE Access, 7, 139839–139851. https://doi.org/10.1109/ACCESS.2019.2943120 [DOI: 10.1109/ACCESS.2019.2943120]
  89. Jawad, H. M., Jawad, A. M., Nordin, R., Gharghan, S. K., Abdullah, N. F., Ismail, M., et al. (2019). Accurate empirical path-loss model based on particle swarm optimization for wireless sensor networks in smart agriculture. IEEE Sensors Journal, 20, 552–561. https://doi.org/10.1109/JSEN.2019.2940186 [DOI: 10.1109/JSEN.2019.2940186]
  90. Jiayang, H., et al. (2022). Network of low-cost air quality sensors for monitoring indoor, outdoor, and personal PM2.5 exposure in Seattle during the 2020 wildfire season. Atmospheric Environment, 285, 119244. https://doi.org/10.1016/j.atmosenv.2022.119244 [DOI: 10.1016/j.atmosenv.2022.119244]
  91. Jin, H., Yu, J., Cui, D., Gao, S., Yang, H., Zhang, X., et al. (2021). Remote tracking gas molecular via the standalone-like nanosensor-based tele-monitoring system. Nano-micro letters, 13, 1–14. https://doi.org/10.1007/s40820-020-00551-w. [DOI: 10.1007/s40820-020-00551-w.]
  92. Jumaah, H., et al. (2021). Development of UAV-based PM2. 5 monitoring system. Drones, 5, 60. https://doi.org/10.3390/drones5030060 [DOI: 10.3390/drones5030060]
  93. Kang, Y., et al. (2022). Performance evaluation of low-cost air quality sensors: A review. Science of The Total Environment, 818, 151769. https://doi.org/10.1016/j.scitotenv.2021.151769 [DOI: 10.1016/j.scitotenv.2021.151769]
  94. Karagulian, F., et al. (2019). Review of the performance of low-cost sensors for air quality monitoring. Atmosphere, 10, 506. https://doi.org/10.3390/atmos10090506 [DOI: 10.3390/atmos10090506]
  95. Karegar, P. A., & Al-Anbuky, A. (2023). UAV-assisted data gathering from a sparse wireless sensor adaptive networks. Wireless Networks, 29, 1367–1384. https://doi.org/10.1007/s11276-022-03194-4 [DOI: 10.1007/s11276-022-03194-4]
  96. Kataria, A., & Puri, V. (2022). AI- and IoT-based hybrid model for air quality prediction in a smart city with network assistance. IET Networks, 11(6), 221–233. https://doi.org/10.1049/ntw2.12053 [DOI: 10.1049/ntw2.12053]
  97. Kavuncuoğlu, E., Uzunhisarcıklı, E., Barshan, B., & Özdemir, A. T. (2022). Investigating the performance of wearable motion sensors on recognizing falls and daily activities via machine learning. Digital Signal Processing, 126, 103365. https://doi.org/10.1016/j.dsp.2021.103365 [DOI: 10.1016/j.dsp.2021.103365]
  98. Kazim, M., et al. (2022). Perception action aware-based autonomous drone race in a photorealistic environment. IEEE Access, 10, 42566–42576. https://doi.org/10.1109/ACCESS.2022.3168710 [DOI: 10.1109/ACCESS.2022.3168710]
  99. Khalifeh, A., Darabkh, K. A., Khasawneh, A. M., Alqaisieh, I., Salameh, M., AlAbdala, A., et al. (2021). Wireless sensor networks for smart cities: Network design, implementation and performance evaluation. Electronics, 10, 218. https://doi.org/10.3390/electronics10020218 [DOI: 10.3390/electronics10020218]
  100. Khan, A., Saurabh, C., & Parameshwara, M. C. (2022). Air quality monitoring and management system model of vehicles based on the internet of things. Engineering Research Express, 4, 025014. https://doi.org/10.1088/2631-8695/ac6791 [DOI: 10.1088/2631-8695/ac6791]
  101. Kim, G.-S., Son, Y.-S., Lee, J.-H., Kim, I.-W., Kim, J.-C., Oh, J.-T., et al. (2016). Air pollution monitoring and control system for subway stations using environmental sensors. Journal of Sensors, 2016. https://doi.org/10.1155/2016/1865614
  102. Kim, M.-J., Chae, S.-H., Shim, Y.-B., Lee, D.-H., Kim, M.-J., Moon, Y.-K., et al. (2019). Design and implementation of magnetic induction based wireless underground communication system supporting distance measurement. KSII Transactions on Internet and Information Systems (TIIS), 13, 4227–4240. https://doi.org/10.3837/tiis.2019.08.023 [DOI: 10.3837/tiis.2019.08.023]
  103. Kim, T. W., Moon, S. Y., Shin, I. C., & Park, J. S. (2023). A research on quantum repeater platform using drone: Utilization methods and considerations. In J. S. Park, L. T. Yang, Y. Pan, & J. H. Park (Eds.), Advances in Computer Science and Ubiquitous Computing. CUTECSA 2022 (Lecture Notes in Electrical Engineering) (Vol. 1028). Springer. https://doi.org/10.1007/978-981-99-1252-0_14 [DOI: 10.1007/978-981-99-1252-0_14]
  104. Kourtit, K., et al. (2023). Cyclists as intelligent carriers of space-time environmental information: Crowd-sourced sensor data for local air quality measurement and mobility analysis in the Netherlands. Journal of Urban Technology. https://doi.org/10.1080/10630732.2023.2177954
  105. Kristiani, E., Yang, C.-T., Huang, C.-Y., Ko, P.-C., & Fathoni, H. (2020). On construction of sensors, edge, and cloud (ISEC) framework for smart system integration and applications. IEEE Internet of Things Journal, 8, 309–319. https://doi.org/10.1109/JIOT.2020.3004244 [DOI: 10.1109/JIOT.2020.3004244]
  106. Kristiani, E., Yang, C.-T., Huang, C.-Y., Wang, Y.-T., & Ko, P.-C. (2021). The implementation of a cloud-edge computing architecture using OpenStack and Kubernetes for air quality monitoring application. Mobile Networks and Applications, 26, 1070–1092. https://doi.org/10.1007/s11036-020-01620-5 [DOI: 10.1007/s11036-020-01620-5]
  107. Krivetskiy, V. V., Andreev, M. D., Efitorov, A. O., & Gaskov, A. M. (2021). Statistical shape analysis pre-processing of temperature modulated metal oxide gas sensor response for machine learning improved selectivity of gases detection in real atmospheric conditions. Sensors and Actuators B: Chemical, 329, 129187. https://doi.org/10.1016/j.snb.2020.129187 [DOI: 10.1016/j.snb.2020.129187]
  108. Kumar, K., et al. (2023). An IoT-enabled E-Nose for remote detection and monitoring of airborne pollution hazards using LoRa network protocol. Sensors, 23, 4885. https://doi.org/10.3390/s23104885 [DOI: 10.3390/s23104885]
  109. Kumbhar, A., Guvenc, I., Singh, S., & Tuncer, A. (2017). Exploiting LTE-Advanced HetNets and FeICIC for UAV-assisted public safety communications. IEEE Access, 6, 783–796. https://doi.org/10.1109/ACCESS.2017.2776120 [DOI: 10.1109/ACCESS.2017.2776120]
  110. Kuncoro, C. B. D., Asyikin, M. B. Z., & Amaris, A. (2022). Smart-autonomous wireless volatile organic compounds sensor node for indoor air quality monitoring application. International Journal of Environmental Research and Public Health, 19(4), 2439. [DOI: 10.3390/ijerph19042439]
  111. Lai, W.-I., Chen, Y.-Y., & Sun, J.-H. (2022). Ensemble machine learning model for accurate air pollution detection using commercial gas sensors. Sensors, 22, 4393. https://doi.org/10.3390/s22124393 [DOI: 10.3390/s22124393]
  112. Lalik, K., et al. (2022). Self-powered wireless sensor matrix for air pollution detection with a neural predictor. Energies, 15, 1962. https://doi.org/10.3390/en15061962 [DOI: 10.3390/en15061962]
  113. Le, V., et al. (2022). Efficient UAV scheduling for air pollution source detection from chimneys in an industrial area. IEEE Sensors Journal, 22(20), 19983–19994. https://doi.org/10.1109/JSEN.2022.3203127 [DOI: 10.1109/JSEN.2022.3203127]
  114. Lee, K.-S., Lee, S.-R., Kim, Y., & Lee, C. G. (2017). Deep learning–based real-time query processing for wireless sensor network. International Journal of Distributed Sensor Networks, 13, 1550147717707896. https://doi.org/10.1177/155014771770789 [DOI: 10.1177/155014771770789]
  115. Li, B., Cao, R., Wang, Z., Song, R., Peng, Z.-R., Xiu, G., et al. (2019). Use of multi-rotor unmanned aerial vehicles for fine-grained roadside air pollution monitoring. Transportation research record, 2673, 169–180. https://doi.org/10.1177/0361198119847991 [DOI: 10.1177/0361198119847991]
  116. Li, B., Fei, Z., & Zhang, Y. (2018). UAV communications for 5G and beyond: Recent advances and future trends. IEEE Internet of Things Journal, 6, 2241–2263. https://doi.org/10.1109/JIOT.2018.2887086 [DOI: 10.1109/JIOT.2018.2887086]
  117. Li, F., et al. (2023). Machine learning and remote sensing integration for leveraging urban sustainability: A review and framework. Sustainable Cities and Society, 96, 104653. https://doi.org/10.1016/j.scs.2023.104653 [DOI: 10.1016/j.scs.2023.104653]
  118. Li, H., Yang, Y., Qiu, X., Gao, Z., & Ma, G. (2017). Gravitation-based 3-D redeployment schemes for the mobile sensors and sink in gas leakage monitoring. IEEE Access, 5, 8545–8558. https://doi.org/10.1109/ACCESS.2017.2695232 [DOI: 10.1109/ACCESS.2017.2695232]
  119. Li, X., Tupayachi, J., Sharmin, A., & Martinez Ferguson, M. (2023). Drone-aided delivery methods, challenge, and the future: A methodological review. Drones, 7, 191. https://doi.org/10.3390/drones7030191 [DOI: 10.3390/drones7030191]
  120. Liang, Y., Wu, C., Jiang, S., Li, Y. J., Wu, D., Li, M., et al. (2021). Field comparison of electrochemical gas sensor data correction algorithms for ambient air measurements. Sensors and Actuators B: Chemical, 327, 128897. https://doi.org/10.1016/j.snb.2020.128897 [DOI: 10.1016/j.snb.2020.128897]
  121. Liu, S., Yang, X., & Zhou, X. (2021). Development of a low-cost UAV-based system for CH4 monitoring over oil fields. Environmental Technology, 42, 3154–3163. https://doi.org/10.1080/09593330.2020.1724199 [DOI: 10.1080/09593330.2020.1724199]
  122. Liu, X., Li, H., Xue, J., et al. (2023). Location and tracking of environmental pollution sources under multi-UAV vision based on target motion model. Soft Comput. https://doi.org/10.1007/s00500-023-07981-9
  123. Liu, Z., Li, Y., Zhao, L., Liang, R., & Wang, P. (2022). Comparative evaluation of the performance of ZigBee and LoRa wireless networks in building environment. Electronics, 11, 3560. https://doi.org/10.3390/electronics11213560 [DOI: 10.3390/electronics11213560]
  124. Maag, B., Zhou, Z., & Thiele, L. (2018). A survey on sensor calibration in air pollution monitoring deployments. IEEE Internet of Things Journal, 5(6), 4857–4870. https://doi.org/10.1109/JIOT.2018.2853660 [DOI: 10.1109/JIOT.2018.2853660]
  125. Mabrouki, J., Azrour, M., Fattah, G., Dhiba, D., & El Hajjaji, S. (2021). Intelligent monitoring system for biogas detection based on the Internet of Things: Mohammedia, Morocco city landfill case. Big Data Mining and Analytics, 4, 10–17. https://doi.org/10.26599/BDMA.2020.9020017 [DOI: 10.26599/BDMA.2020.9020017]
  126. Madokoro, H., Kiguchi, O., Nagayoshi, T., Chiba, T., Inoue, M., Chiyonobu, S., et al. (2021). Development of drone-mounted multiple sensing system with advanced mobility for in situ atmospheric measurement: A case study focusing on PM2. 5 Local Distribution. Sensors, 21, 4881. https://doi.org/10.3390/s21144881 [DOI: 10.3390/s21144881]
  127. Mahbub, M., Hossain, M. M., & Apu Gazi, M. S. (2020). IoT-Cognizant cloud-assisted energy efficient embedded system for indoor intelligent lighting, air quality monitoring, and ventilation. Internet of things, 11, 100266. https://doi.org/10.1016/j.iot.2020.100266 [DOI: 10.1016/j.iot.2020.100266]
  128. Marques, G., & Pitarma, R. (2019). A cost-effective air quality supervision solution for enhanced living environments through the internet of things. Electronics, 8, 170. https://doi.org/10.3390/electronics8020170 [DOI: 10.3390/electronics8020170]
  129. Masmoudi, A., et al. (2022). Vehicle routing problems with drones equipped with multi-package payload compartments. Transportation Research Part E: Logistics and Transportation Review, 164, 102757. https://doi.org/10.1016/j.tre.2022.102757 [DOI: 10.1016/j.tre.2022.102757]
  130. Megantoro, P., Aldhama, S. A., Prihandana, G. S., & Vigneshwaran, P. (2021). IoT-based weather station with air quality measurement using ESP32 for environmental aerial condition study. TELKOMNIKA (Telecommunication Computing Electronics and Control), 19, 1316–1325. https://doi.org/10.12928/telkomnika.v19i4.18990 [DOI: 10.12928/telkomnika.v19i4.18990]
  131. Mezaal, Y. S., Abdulkareem, S. F., & Ali, J. K. (2018). A dual-band printed slot antenna for WiMAX and metrological wireless applications. Advanced Electromagnetics, 7, 75–81. https://doi.org/10.7716/aem.v7i3.765 [DOI: 10.7716/aem.v7i3.765]
  132. Mishra A,(2018) Air pollution monitoring system based on IoT: Forecasting and predictive modeling using machine learning, in International Conference on Applied Electromagnetics, Signal Processing and Communication (AESPC), KIIT, Bhubaneswar, Odisha, India.
  133. Moiş, G. D., Sanislav, T., Folea, S. C., & Zeadally, S. (2018). Performance evaluation of energy-autonomous sensors using power-harvesting beacons for environmental monitoring in Internet of Things (IoT). Sensors, 18, 1709. https://doi.org/10.3390/s18061709 [DOI: 10.3390/s18061709]
  134. Mukherjee, R., Diwekar, U. M., & Kumar, N. (2020). Real-time optimal spatiotemporal sensor placement for monitoring air pollutants. Clean Technologies and Environmental Policy, 22, 2091–2105. https://doi.org/10.1007/s10098-020-01959-z [DOI: 10.1007/s10098-020-01959-z]
  135. Mullick, A., Abd Rahman, A. H., Dahnil, D. P., & Noraini, N. M. R. (2022). Enhancing data transmission in duct air quality monitoring using mesh network strategy for LoRa. PeerJ Computer Science, 8, e939. https://doi.org/10.7717/peerj-cs.939 [DOI: 10.7717/peerj-cs.939]
  136. Myong, J.-P. (2018). Health effects of particulate matter. The Korean Journal of Medicine, 91, 106–113. https://doi.org/10.5124/jkma.2018.61.12.749 [DOI: 10.5124/jkma.2018.61.12.749]
  137. Na, H. J., & Yoo, S.-J. (2019). PSO-based dynamic UAV positioning algorithm for sensing information acquisition in wireless sensor networks. IEEE Access, 7, 77499–77513. https://doi.org/10.1109/ACCESS.2019.2922203 [DOI: 10.1109/ACCESS.2019.2922203]
  138. Ng, C.-L., Kai, F.-M., Tee, M. H., Tan, N., & Hemond, H. F. (2018). A prototype sensor for in situ sensing of fine particulate matter and volatile organic compounds. Sensors, 18, 265 https://doi.org/10.3390/s18010265 [DOI: 10.3390/s18010265]
  139. Nielsen, R. F., Nazemzadeh, N., Sillesen, L. W., Andersson, M. P., Gernaey, K. V., & Mansouri, S. S. (2020). Hybrid machine learning assisted modelling framework for particle processes. Computers & Chemical Engineering, 140, 106916. https://doi.org/10.1016/j.compchemeng.2020.106916 [DOI: 10.1016/j.compchemeng.2020.106916]
  140. Ning, X. (2022). Online learning platform for air environment detection and career planning based on 5G network. Mobile Information Systems, 2022, 9981624. https://doi.org/10.1155/2022/9981624 [DOI: 10.1155/2022/9981624]
  141. Noori, R., & Dahnil, D. P. (2020). The effects of speed and altitude on wireless air pollution measurements using hexacopter drone. International Journal of Advanced Computer Science and Applications, 11. https://doi.org/10.14569/IJACSA.2020.0110931
  142. Nurcahyanto, H., et al. (2022). Multilevel RNN-based PM10 air quality prediction for industrial Internet of Things applications in cleanroom environment. Wireless Communications and Mobile Computing, 2022, 1874237. https://doi.org/10.1155/2022/1874237 [DOI: 10.1155/2022/1874237]
  143. Ouni, R., & Saleem, K. (2022). Framework for sustainable wireless sensor network based environmental monitoring. Sustainability, 14, 8356. https://doi.org/10.3390/su14148356 [DOI: 10.3390/su14148356]
  144. Palacín, J., Martínez, D., Clotet, E., Pallejà, T., Burgués, J., Fonollosa, J., et al. (2019). Application of an array of metal-oxide semiconductor gas sensors in an assistant personal robot for early gas leak detection. Sensors, 19, 1957. https://doi.org/10.3390/s19091957 [DOI: 10.3390/s19091957]
  145. Pang, F., Doğançay, K., Nguyen, N. H., & Zhang, Q. (2020). AOA pseudolinear target motion analysis in the presence of sensor location errors. IEEE Transactions on Signal Processing, 68, 3385–3399. https://doi.org/10.1109/TSP.2020.2998896 [DOI: 10.1109/TSP.2020.2998896]
  146. Park, J., Jumu, F., Power, J., Richard, M., Elsahli, Y., Jarkas, M. A., et al. (2022). Drone-mountable gas sensing platform using graphene chemiresistors for remote in-field monitoring. Sensors, 22, 2383. https://doi.org/10.3390/s22062383 [DOI: 10.3390/s22062383]
  147. Park, Y. M., Sousan, S., Streuber, D., & Zhao, K. (2021). GeoAir—A novel portable, GPS-enabled, low-cost air-pollution sensor: Design strategies to facilitate citizen science research and geospatial assessments of personal exposure. Sensors, 21(11), 3761. [DOI: 10.3390/s21113761]
  148. Parri, L., et al. (2023). A distributed IoT air quality measurement system for high-risk workplace safety enhancement. Sensors, 23, 5060. https://doi.org/10.3390/s23115060 [DOI: 10.3390/s23115060]
  149. Patil, D., Thanuja, T. C., & Melinamath, B. C. (2019). Air pollution monitoring system using wireless sensor network (WSN). In Data management, analytics and innovation (pp. 391–400). Springer. https://doi.org/10.1007/978-981-13-1402-5_30 [DOI: 10.1007/978-981-13-1402-5_30]
  150. Peladarinos, N., Cheimaras, V., Piromalis, D., Arvanitis, K. G., Papageorgas, P., Monios, N., et al. (2021). Early warning systems for COVID-19 infections based on low-cost indoor air-quality sensors and LPWANs. Sensors, 21, 6183. https://doi.org/10.3390/s21186183 [DOI: 10.3390/s21186183]
  151. Phala, K. S., Kumar, A., & Hancke, G. P. (2016). Air quality monitoring system based on ISO/IEC/IEEE 21451 standards. IEEE Sensors Journal, 16, 5037–5045. https://doi.org/10.1109/JSEN.2016.2555935 [DOI: 10.1109/JSEN.2016.2555935]
  152. Pochwała, S., Anweiler, S., Deptuła, A., Gardecki, A., Lewandowski, P., & Przysiężniuk, D. (2021). Optimization of air pollution measurements with unmanned aerial vehicle low-cost sensor based on an inductive knowledge management method. Optimization and Engineering, 22. https://doi.org/10.1007/s11081-021-09668-2
  153. Pochwała, S., Gardecki, A., Lewandowski, P., Somogyi, V., & Anweiler, S. (2020). Developing of low-cost air pollution sensor—Measurements with the unmanned aerial vehicles in Poland. Sensors, 20, 3582. https://doi.org/10.3390/s20123582 [DOI: 10.3390/s20123582]
  154. Pons, M., et al. (2023). Utilization of 5G technologies in IoT applications: Current limitations by interference and network optimization difficulties—A review. Sensors, 23, 3876. https://doi.org/10.3390/s23083876 [DOI: 10.3390/s23083876]
  155. Pop, A., et al. (2023). Monitoring and Prediction of Indoor Air Quality for Enhanced Occupational Health. Intelligent Automation & Soft Computing, 35(1). https://doi.org/10.32604/iasc.2023.025069
  156. Potyrailo, R. A., Go, S., Sexton, D., Li, X., Alkadi, N., Kolmakov, A., et al. (2020). Extraordinary performance of semiconducting metal oxide gas sensors using dielectric excitation. Nature Electronics, 3, 280–289. https://doi.org/10.1038/s41928-020-0402-3 [DOI: 10.1038/s41928-020-0402-3]
  157. Pranvera, K., et al. (2022). Air pollution exposure monitoring using portable low-cost air quality sensors. Smart Health, 23, 100241. https://doi.org/10.1016/j.smhl.2021.100241 [DOI: 10.1016/j.smhl.2021.100241]
  158. Preethi, K., & Tamilarasan, R. (2021). Monitoring of air pollution to establish optimal less polluted path by utilizing wireless sensor network. Journal of Ambient Intelligence and Humanized Computing, 12, 6375–6386. https://doi.org/10.1007/s12652-020-02232-3 [DOI: 10.1007/s12652-020-02232-3]
  159. Qadir, Q. M., Rashid, T. A., Al-Salihi, N. K., Ismael, B., Kist, A. A., & Zhang, Z. (2018). Low power wide area networks: A survey of enabling technologies, applications and interoperability needs. IEEE Access, 6, 77454–77473. https://doi.org/10.1109/ACCESS.2018.2883151 [DOI: 10.1109/ACCESS.2018.2883151]
  160. Qin, Y., et al. (2022). Drone charging stations deployment in rural areas for better wireless coverage: Challenges and solutions. IEEE Internet of Things Magazine, 5(1), 148–153. https://doi.org/10.1109/IOTM.001.2100083 [DOI: 10.1109/IOTM.001.2100083]
  161. Qiu, Z., Chu, X., Calvo-Ramirez, C., Briso, C., & Yin, X. (2017). Low altitude UAV air-to-ground channel measurement and modeling in semiurban environments. Wireless Communications and Mobile Computing, 2017. https://doi.org/10.1155/2017/1587412
  162. Ravi, N., Seshadri, K., & Pariventhan, P. (2019). Deep learning-based framework for smart sustainable cities: A case-study in protection from air pollution. International Journal of Intelligent Information Technologies (IJIIT), 15, 76–107. https://doi.org/10.4018/IJIIT.2019100105 [DOI: 10.4018/IJIIT.2019100105]
  163. Raza, U., Kulkarni, P., & Sooriyabandara, M. (2017). Low power wide area networks: An overview. IEEE communications Surveys & Tutorials, 19, 855–873. https://doi.org/10.1109/COMST.2017.2652320 [DOI: 10.1109/COMST.2017.2652320]
  164. Reddy, S. K., Naik, A. S., & Mandela, G. R. (2023). Development of a Reliable Wireless Communication System to Monitor Environmental Parameters from Various Positions of Underground Mines to the Surface using ZigBee Modules. Journal of The Institution of Engineers (India): Series D, 1–25. https://doi.org/10.1007/s40033-023-00486-7
  165. Renwick, J. D., Klein, L. J., & Hamann, H. F. (2016). Drone-based reconstruction for 3D geospatial data processing. 2016 IEEE 3rd World Forum on Internet of Things (WF-IoT), 729–734. https://doi.org/10.1109/WF-IoT.2016.7845501
  166. Rivai, M., Dikairono, R., & Priyanta, I. F. (2020). Mapping gaseous pollutant using quadcopter on autonomous waypoint navigation. International Journal on Advanced Science Engineering Information Technology, 10(5), 1998–2004. https://doi.org/10.18517/ijaseit.10.5.6656 [DOI: 10.18517/ijaseit.10.5.6656]
  167. Rohi, G., Ejofodomi, O., & Ofualagba, G. (2020). Autonomous monitoring, analysis, and countering of air pollution using environmental drones. Heliyon, 6, e03252. https://doi.org/10.1016/j.heliyon.2020.e03252 [DOI: 10.1016/j.heliyon.2020.e03252]
  168. Rosmiati, M., Rizal, M. F., Susanti, F., & Alfisyahrin, G. F. (2019). Air pollution monitoring system using LoRa module as transceiver system. TELKOMNIKA (Telecommunication Computing Electronics and Control), 17, 586–592. https://doi.org/10.12928/telkomnika.v17i2.11760 [DOI: 10.12928/telkomnika.v17i2.11760]
  169. Rossi, M., & Brunelli, D. (2015). Autonomous gas detection and mapping with unmanned aerial vehicles. IEEE Transactions on Instrumentation and Measurement, 65, 765–775. https://doi.org/10.1109/TIM.2015.2506319 [DOI: 10.1109/TIM.2015.2506319]
  170. Rutkauskas, M., Asenov, M., Ramamoorthy, S., & Reid, D. T. (2019). Autonomous multi-species environmental gas sensing using drone-based Fourier-transform infrared spectroscopy. Optics Express, 27, 9578–9587. https://doi.org/10.1364/OE.27.009578 [DOI: 10.1364/OE.27.009578]
  171. Saeed, T. R., Al-Muifraje, M. H., Sadah, J. A., & Abed, A. N. (2019). Moving target tracking and classification based on micro-Doppler signatures. International Journal of Intelligent Engineering and Systems, 12, 118–128. https://doi.org/10.22266/ijies2019.0630.13 [DOI: 10.22266/ijies2019.0630.13]
  172. Saheer, L. B., Bhasy, A., Maktabdar, M., & Zarrin, J. (2022). Data-driven framework for understanding and predicting air quality in urban areas. Frontiers in big Data, 5. https://doi.org/10.3389/fdata.2022.822573
  173. Saini, J., Dutta, M., & Marques, G. (2020). A comprehensive review on indoor air quality monitoring systems for enhanced public health. Sustainable Environment Research, 30, 6. https://doi.org/10.1186/s42834-020-0047-y
  174. Saini, J., Dutta, M., & Marques, G. (2021). Sensors for indoor air quality monitoring and assessment through Internet of Things: A systematic review. Environmental Monitoring and Assessment, 193, 66. https://doi.org/10.1007/s10661-020-08781-6 [DOI: 10.1007/s10661-020-08781-6]
  175. Sakti, A. D., et al. (2023). Multi-air pollution risk assessment in Southeast Asia region using integrated remote sensing and socio-economic data products. Science of The Total Environment, 854, 158825. [DOI: 10.1016/j.scitotenv.2022.158825]
  176. Santos, C., Jimenez, J. A., & Espinosa, F. (2019). Effect of event-based sensing on IoT node power efficiency. Case study: Air quality monitoring in smart cities. IEEE Access, 7, 132577–132586. https://doi.org/10.1109/ACCESS.2019.2941371 [DOI: 10.1109/ACCESS.2019.2941371]
  177. Saraereh, O. A., Alsaraira, A., Khan, I., & Uthansakul, P. (2020). Performance evaluation of UAV-enabled LoRa networks for disaster management applications. Sensors, 20, 2396. https://doi.org/10.3390/s20082396 [DOI: 10.3390/s20082396]
  178. Saxena, P., & Shukla, P. (2023). A review on recent developments and advances in environmental gas sensors to monitor toxic gas pollutants. Environmental Progress & Sustainable Energy, e14126. https://doi.org/10.1002/ep.14126
  179. Schilt, U., et al. (2023). Low-cost sensor node for air quality monitoring: Field tests and validation of particulate matter measurements. Sensors, 23, 794. https://doi.org/10.3390/s23020794 [DOI: 10.3390/s23020794]
  180. Schürholz, D., Kubler, S., & Zaslavsky, A. (2020). Artificial intelligence-enabled context-aware air quality prediction for smart cities. Journal of Cleaner Production, 271, 121941. https://doi.org/10.1016/j.jclepro.2020.121941 [DOI: 10.1016/j.jclepro.2020.121941]
  181. Sergio, P., et al. (2022). Wearable system for outdoor air quality monitoring in a WSN with cloud computing: Design, validation and deployment. Chemosphere, 307, 135948. https://doi.org/10.1016/j.chemosphere.2022.135948 [DOI: 10.1016/j.chemosphere.2022.135948]
  182. Shaban, K. B., Kadri, A., & Rezk, E. (2016). Urban air pollution monitoring system with forecasting models. IEEE Sensors Journal, 16, 2598–2606. https://doi.org/10.1109/JSEN.2016.2514378 [DOI: 10.1109/JSEN.2016.2514378]
  183. Shakhatreh, H., Alenezi, A., Sawalmeh, A., Almutiry, M., & Malkawi, W. (2021). Efficient placement of an aerial relay drone for throughput maximization. Wireless Communications and Mobile Computing, 2021. https://doi.org/10.1155/2021/5589605
  184. Shen, L., Wang, Y., Liu, K., Yang, Z., Shi, X., Yang, X., et al. (2020). Synergistic path planning of multi-UAVs for air pollution detection of ships in ports. Transportation Research Part E: Logistics and Transportation Review, 144, 102128. https://doi.org/10.1016/j.tre.2020.102128 [DOI: 10.1016/j.tre.2020.102128]
  185. Shen, S., Fan, Z., Deng, J., Guo, X., Zhang, L., Liu, G., et al. (2018). An LC passive wireless gas sensor based on PANI/CNT composite. Sensors, 18, 3022. https://doi.org/10.3390/s18093022 [DOI: 10.3390/s18093022]
  186. Shi, L., Jiang, Z., & Xu, S. (2021). Throughput-aware path planning for UAVs in D2D 5G networks. Ad Hoc Networks, 116, 102427. https://doi.org/10.1016/j.adhoc.2021.102427 [DOI: 10.1016/j.adhoc.2021.102427]
  187. Siddiqui, S. A., Fatima, N., & Ahmad, A. (2021). Smart air pollution monitoring system with smog prediction model using machine learning. International Journal of Advanced Computer Science and Applications, 12. https://doi.org/10.14569/IJACSA.2021.0120846
  188. Simo, A., Dzitac, S., Dzitac, I., Frigura-Iliasa, M., & Frigura-Iliasa, F. M. (2021). Air quality assessment system based on self-driven drone and LoRaWAN network. Computer Communications, 175, 13–24. https://doi.org/10.1016/j.comcom.2021.04.032 [DOI: 10.1016/j.comcom.2021.04.032]
  189. Simsek, O. I., & Alagoz, B. B. (2023). Optimal architecture artificial neural network model design with exploitative alpha gray wolf optimization for soft calibration of CO concentration measurements in electronic nose applications. Transactions of the Institute of Measurement and Control, 45(4), 686–699. https://doi.org/10.1177/01423312221119648 [DOI: 10.1177/01423312221119648]
  190. Sohail, M. F., Leow, C. Y., & Won, S. (2018). Non-orthogonal multiple access for unmanned aerial vehicle assisted communication. IEEE Access, 6, 22716–22727. https://doi.org/10.1109/ACCESS.2018.2826650 [DOI: 10.1109/ACCESS.2018.2826650]
  191. Sokhi, R. S., et al. (2022). Advances in air quality research – Current and emerging challenges. Atmos. Chem. Phys., 22, 4615–4703. https://doi.org/10.5194/acp-22-4615-2022 [DOI: 10.5194/acp-22-4615-2022]
  192. Su, X., Liu, X., Motlagh, N. H., Cao, J., Su, P., Pellikka, P., et al. (2021). Intelligent and scalable air quality monitoring with 5G edge. IEEE Internet Computing, 25, 35–44. https://doi.org/10.1109/MIC.2021.3059189 [DOI: 10.1109/MIC.2021.3059189]
  193. Suárez, J. I., Arroyo, P., Lozano, J., Herrero, J. L., & Padilla, M. (2018). Bluetooth gas sensing module combined with smartphones for air quality monitoring. Chemosphere, 205, 618–626. https://doi.org/10.1016/j.chemosphere.2018.04.154 [DOI: 10.1016/j.chemosphere.2018.04.154]
  194. Suh, J.-H., Cho, I., Kang, K., Kweon, S.-J., Lee, M., Yoo, H.-J., et al. (2018). Fully integrated and portable semiconductor-type multi-gas sensing module for IoT applications. Sensors and Actuators B: Chemical, 265, 660–667. https://doi.org/10.1016/j.snb.2018.03.099 [DOI: 10.1016/j.snb.2018.03.099]
  195. Sun, L., et al. (2023). A portable UAV-based laser-induced fluorescence lidar system for oil pollution and aquatic environment monitoring. Optics Communications, 527, 128914. https://doi.org/10.1016/j.optcom.2022.128914 [DOI: 10.1016/j.optcom.2022.128914]
  196. Suriano, D. (2021). A portable air quality monitoring unit and a modular, flexible tool for on-field evaluation and calibration of low-cost gas sensors. HardwareX, 9, e00198 https://doi.org/10.1016%20/j.ohx.2021.e00198 [DOI: 10.1016/j.ohx.2021.e00198]
  197. Talib, A. M., & Jasim, M. N. (2021). GIS-GPS based national air pollution monitoring system. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2021.05.445
  198. Tan, Q., et al. (2023). Virtual flight simulation of delivery drone noise in the urban residential community. Transportation Research Part D: Transport and Environment, 118, 103686. https://doi.org/10.1016/j.trd.2023.103686 [DOI: 10.1016/j.trd.2023.103686]
  199. Tancev, G., & Toro, F. G. (2022). Stochastic online calibration of low-cost gas sensor networks with mobile references. IEEE Access, 10, 13901–13910. https://doi.org/10.1109/ACCESS.2022.3145945 [DOI: 10.1109/ACCESS.2022.3145945]
  200. Thomas, G. W., Sousan, S., Tatum, M., Liu, X., Zuidema, C., Fitzpatrick, M., et al. (2018). Low-cost, distributed environmental monitors for factory worker health. Sensors, 18, 1411. https://doi.org/10.3390/s18051411 [DOI: 10.3390/s18051411]
  201. Toma, C., Alexandru, A., Popa, M., & Zamfiroiu, A. (2019). IoT solution for smart cities’ pollution monitoring and the security challenges. Sensors, 19, 3401. https://doi.org/10.3390/s19153401 [DOI: 10.3390/s19153401]
  202. Tosato, P., Facinelli, D., Prada, M., Gemma, L., Rossi, M., & Brunelli, D. (2019). An autonomous swarm of drones for industrial gas sensing applications. 2019 IEEE 20th International Symposium on" A World of Wireless, Mobile and Multimedia Networks"(WoWMoM), 1–6. https://doi.org/10.1109/WoWMoM.2019.8793043
  203. Turgut, E., & Gursoy, M. C. (2018). Downlink analysis in unmanned aerial vehicle (UAV) assisted cellular networks with clustered users. IEEE Access, 6, 36313–36324. https://doi.org/10.1109/ACCESS.2018.2841655 [DOI: 10.1109/ACCESS.2018.2841655]
  204. Vajs, I., Drajic, D., Gligoric, N., Radovanovic, I., & Popovic, I. (2021). Developing relative humidity and temperature corrections for low-cost sensors using machine learning. Sensors, 21, 3338. https://doi.org/10.3390/s21103338 [DOI: 10.3390/s21103338]
  205. Vasconcelos, I. L. C., & Aquino, A. L. L. (2023). Environmental modeling and traffic simulation: A multivariate approach to monitor urban air pollutant agents. Journal of Internet Services and Applications, 14(1), 32–46. https://doi.org/10.5753/jisa.2023.2378 [DOI: 10.5753/jisa.2023.2378]
  206. Velasco, A., Ferrero, R., Gandino, F., Montrucchio, B., & Rebaudengo, M. (2016). A mobile and low-cost system for environmental monitoring: A case study. Sensors, 16, 710. https://doi.org/10.3390/s16050710 [DOI: 10.3390/s16050710]
  207. Villa, T. F., Salimi, F., Morton, K., Morawska, L., & Gonzalez, F. (2016). Development and validation of a UAV based system for air pollution measurements. Sensors, 16, 2202. https://doi.org/10.3390/s16122202 [DOI: 10.3390/s16122202]
  208. Viswanathan, V., et al. (2022). The challenges and opportunities of battery-powered flight. Nature, 601, 519–525. https://doi.org/10.1038/s41586-021-04139-1 [DOI: 10.1038/s41586-021-04139-1]
  209. Waheb, A., et al. (2022). LoRaWAN-Based IoT System implementation for long-range outdoor air quality monitoring. Internet of Things, 19, 100540. https://doi.org/10.1016/j.iot.2022.100540 [DOI: 10.1016/j.iot.2022.100540]
  210. Wang, J., et al. (2023). Quantifying the dynamic characteristics of indoor air pollution using real-time sensors: Current status and future implication. Environment International, 175, 107934. https://doi.org/10.1016/j.envint.2023.107934 [DOI: 10.1016/j.envint.2023.107934]
  211. Wang, X., Garg, S., Lin, H., Kaddoum, G., Hu, J., & Alhamid, M. F. (2021). An intelligent uav based data aggregation algorithm for 5g-enabled internet of things. Computer Networks, 185, 107628. https://doi.org/10.1016/j.comnet.2020.107628 [DOI: 10.1016/j.comnet.2020.107628]
  212. Wang, Y., Wang, Y., Zhang, X., et al. (2020). Modeling of pollutant distribution based on mobile sensor networks. Environmental Science and Pollution Research, 27, 11413–11424. https://doi.org/10.1007/s11356-020-07684-w [DOI: 10.1007/s11356-020-07684-w]
  213. Wei, P., Sun, L., Anand, A., Zhang, Q., Huixin, Z., Deng, Z., et al. (2020). Development and evaluation of a robust temperature sensitive algorithm for long term NO2 gas sensor network data correction. Atmospheric Environment, 230, 117509. https://doi.org/10.1016/j.atmosenv.2020.117509 [DOI: 10.1016/j.atmosenv.2020.117509]
  214. Wen, J., & Dargie, W. (2021). Evaluation of the quality of aerial links in low-power wireless sensor networks. IEEE Sensors Journal, 21, 13924–13934. https://doi.org/10.1109/JSEN.2021.3069298 [DOI: 10.1109/JSEN.2021.3069298]
  215. Wivou J, Udawatta L, Alshehhi A, Alzaabi E, Albeloshi A, Alfalasi S,(2016) Air quality monitoring for sustainable systems via drone based technology, in 2016 IEEE International Conference on Information and Automation for Sustainability (ICIAfS), 1-5. https://doi.org/10.1109/ICIAFS.2016.7946542
  216. Wu, Y., Liu, T., Ling, S. H., Szymanski, J., Zhang, W., & Su, S. W. (2019). Air quality monitoring for vulnerable groups in residential environments using a multiple hazard gas detector. Sensors, 19, 362. https://doi.org/10.3390/s19020362 [DOI: 10.3390/s19020362]
  217. Xiao, D., Wang, Y., & Cheng, Z. (2021). Agent-based autonomous pollution source localization for complex environment. Journal of Ambient Intelligence and Humanized Computing, 12, 9481–9489. https://doi.org/10.1007/s12652-020-02686-5 [DOI: 10.1007/s12652-020-02686-5]
  218. Xing, N., Wang, Y., Teng, L., & Li, L. (2022). Communication and trajectory design in UAV-enabled flying network. Digital Signal Processing, 126, 103489. https://doi.org/10.1016/j.dsp.2022.103489 [DOI: 10.1016/j.dsp.2022.103489]
  219. Xing, Y., Vincent, T. A., Fan, H., Schaffernicht, E., Bennetts, V. H., Lilienthal, A. J., et al. (2019). FireNose on mobile robot in harsh environments. IEEE Sensors Journal, 19, 12418–12431. https://doi.org/10.1109/JSEN.2019.2939039 [DOI: 10.1109/JSEN.2019.2939039]
  220. Xu, L., He, J., Duan, S., Wu, X., & Wang, Q. (2016). Comparison of machine learning algorithms for concentration detection and prediction of formaldehyde based on electronic nose. Sensor Review, 36(2), 207–216. https://doi.org/10.1108/SR-07-2015-0104 [DOI: 10.1108/SR-07-2015-0104]
  221. Xu, S., Doğançay, K., & Hmam, H. (2017). Distributed pseudolinear estimation and UAV path optimization for 3D AOA target tracking. Signal Processing, 133, 64–78. https://doi.org/10.1016/j.sigpro.2016.10.012 [DOI: 10.1016/j.sigpro.2016.10.012]
  222. Yang, S., Talbot, R. W., Frish, M. B., Golston, L. M., Aubut, N. F., Zondlo, M. A., et al. (2018). Natural gas fugitive leak detection using an unmanned aerial vehicle: Measurement system description and mass balance approach. Atmosphere, 9, 383. https://doi.org/10.3390/atmos9100383 [DOI: 10.3390/atmos9100383]
  223. Yang, X., Wang, X., Li, X., Gu, D., Liang, C., Li, K., et al. (2020). Exploring emerging IoT technologies in smart health research: A knowledge graph analysis. BMC Medical Informatics and Decision Making, 20, 1–12. https://doi.org/10.1186/s12911-020-01278-9 [DOI: 10.1186/s12911-020-01278-9]
  224. Yang Y and Li L, (2015) A smart sensor system for air quality monitoring and massive data collection, in 2015 International Conference on Information and Communication Technology Convergence (ICTC), 147-152. https://doi.org/10.1109/ICTC.2015.7354515
  225. Yang, Y., Zheng, Z., Bian, K., Song, L., & Han, Z. (2017). Real-time profiling of fine-grained air quality index distribution using UAV sensing. IEEE Internet of Things Journal, 5, 186–198. https://doi.org/10.1109/JIOT.2017.2777820 [DOI: 10.1109/JIOT.2017.2777820]
  226. Yew, C., & Elisa, Y. (2023). Battery cycle life assessment for a lift+cruise electric vertical takeoff and landing transporter drone. Journal of Energy Storage, 66, 107493. https://doi.org/10.1016/j.est.2023.107493 [DOI: 10.1016/j.est.2023.107493]
  227. Yi, W.-Y., Leung, K.-S., & Leung, Y. (2017). A modular plug-and-play sensor system for urban air pollution monitoring: Design, implementation and evaluation. Sensors, 18, 7. https://doi.org/10.3390/s18010007 [DOI: 10.3390/s18010007]
  228. Yin, S., Liu, H., & Duan, Z. (2021). Hourly PM2. 5 concentration multi-step forecasting method based on extreme learning machine, boosting algorithm and error correction model. Digital Signal Processing, 118, 103221. https://doi.org/10.1016/j.dsp.2021.103221 [DOI: 10.1016/j.dsp.2021.103221]
  229. Yuan, H., Xiao, C., Wang, Y., Peng, X., Wen, Y., & Li, Q. (2020). Maritime vessel emission monitoring by an UAV gas sensor system. Ocean Engineering, 218, 108206. https://doi.org/10.1016/j.oceaneng.2020.108206 [DOI: 10.1016/j.oceaneng.2020.108206]
  230. Yungaicela-Naula, N., Garza-Castañon, L. E., Zhang, Y., & Minchala-Avila, L. I. (2019). UAV-based air pollutant source localization using combined metaheuristic and probabilistic methods. Applied Sciences, 9, 3712. https://doi.org/10.3390/app9183712 [DOI: 10.3390/app9183712]
  231. Zaidan, M. A., et al. (2023). Intelligent air pollution sensors calibration for extreme events and drifts monitoring. IEEE Transactions on Industrial Informatics, 19(2), 1366–1379. https://doi.org/10.1109/TII.2022.3151782 [DOI: 10.1109/TII.2022.3151782]
  232. Zakaria, N. A., Abidin, Z. Z., Harum, N., Hau, L. C., Ali, N. S., & Jafar, F. A. (2018). Wireless internet of things-based air quality device for smart pollution monitoring. International Journal of Advanced Computer Science and Applications, 9. https://doi.org/10.14569/IJACSA.2018.091110
  233. Zhang, H., & Srinivasan, R. (2020). A systematic review of air quality sensors, guidelines, and measurement studies for indoor air quality management. Sustainability, 12, 9045. https://doi.org/10.3390/su12219045 [DOI: 10.3390/su12219045]
  234. Zhang, H., Zhang, S., Pan, W., et al. (2021). Low-cost sensor system for monitoring the oil mist concentration in a workshop. Environmental Science and Pollution Research, 28, 14943–14956. https://doi.org/10.1007/s11356-020-11709-9 [DOI: 10.1007/s11356-020-11709-9]
  235. Zhao, L., Wu, W., & Li, S. (2019). Design and implementation of an IoT-based indoor air quality detector with multiple communication interfaces. IEEE Internet of Things Journal, 6, 9621–9632. https://doi.org/10.1109/JIOT.2019.2930191 [DOI: 10.1109/JIOT.2019.2930191]
  236. Zhao, Y.-L., Tang, J., Huang, H.-P., Wang, Z., Chen, T.-L., Chiang, C.-W., et al. (2020). Development of iot technologies for air pollution prevention and improvement. Aerosol and Air Quality Research, 20, 2874–2888. https://doi.org/10.4209/aaqr.2020.05.0255 [DOI: 10.4209/aaqr.2020.05.0255]
  237. Zhou, S., et al. (2023). Research on remote sensing image carbon emission monitoring based on deep learning. Signal Processing, 207, 108943. https://doi.org/10.1016/j.sigpro.2023.108943 [DOI: 10.1016/j.sigpro.2023.108943]
  238. Zhu, Z., Chen, B., Zhao, Y., & Ji, Y. (2021). Multi-sensing paradigm based urban air quality monitoring and hazardous gas source analyzing: A Review. Journal of Safety Science and Resilience, 2, 131–145. https://doi.org/10.1016/j.jnlssr.2021.08.004 [DOI: 10.1016/j.jnlssr.2021.08.004]
  239. Zurada, J. (1992). Introduction to artificial neural systems. West Publishing Co..

MeSH Term

Artificial Intelligence
Environmental Monitoring
Air Pollution
Environmental Pollution
Gases

Chemicals

Gases

Word Cloud

Created with Highcharts 10.0.0pollutionairpowersensorsseveralsystembasedwirelessartificialintelligenceneuralnetworkslowconsumptioncanvaluespollutinggasesatmosphereproblemsusingsensingaccuracysensorbuildintelligentdetectingLoRaadoptedworkdronesAirdevelopmentcontemporaryAImethodsANNsgivenresearchersaroundworldnewopportunitiesaddressclimatechangequalityissuessmallsizecostfacilitateobtainingHowevertechniquerelatevariouseffectsdriftssluggishreactionschangeslevelsRecentlymachinelearningmadefeasiblecontext-awareanticipateeventsmonitorpresentconditionspaperfocusesuseenvironmenttypesprotocolsincludingWi-FiBluetoothZigBeeGlobalPositioningSystemGPS4G/5GFurthermoreclassifiespreviouspublishedarticlestopicaccordingprotocolcomparedtermsperformancemetricshardwareplatformalgorithmsavingsadditionhighlightschallengeslimitationsfacingmissionresultsuggestimplementbasestationbackpropagationBPprovidesflexibilitytrackpredicttrueovercomeFinallyaddressesadvantagesfieldforecastingcommunications:reviewArtificialDroneReal-timeWirelessnetwork

Similar Articles

Cited By

No available data.