Spatial Cluster Patterns of Retinal Sensitivity Loss in Intermediate Age-Related Macular Degeneration Features.

Matt Trinh, Michael Kalloniatis, David Alonso-Caneiro, Lisa Nivison-Smith
Author Information
  1. Matt Trinh: Centre for Eye Health, University of New South Wales, Sydney, New South Wales, Australia.
  2. Michael Kalloniatis: Centre for Eye Health, University of New South Wales, Sydney, New South Wales, Australia.
  3. David Alonso-Caneiro: School of Science, Technology and Engineering, University of Sunshine Coast, Queensland, Australia.
  4. Lisa Nivison-Smith: Centre for Eye Health, University of New South Wales, Sydney, New South Wales, Australia.

Abstract

Purpose: To examine spatial patterns of retinal sensitivity loss in the three key features of intermediate age-related macular degeneration (iAMD).
Methods: One-hundred individuals (53 iAMD, 47 normal) underwent 10-2 mesopic microperimetry testing in one eye. Pointwise sensitivities (dB) were corrected for age, sex, iAMD status, and co-presence of co-localized key iAMD features: drusen load, pigmentary abnormalities, and reticular pseudodrusen (RPD). Clusters (labeled by ranks of magnitude C-2, C-1, C0) were derived from pointwise sensitivities and then assessed by quadrants and eccentricity/rings.
Results: Two clusters of decreased sensitivities were evident in iAMD versus normal: C-2, -1.67 dB (95% CI (confidence intervals), -2.36 to -0.98; P < 0.0001); C-1, -0.93 dB (95% CI, -1.5 to -0.36; P < 0.01). One cluster of decreased sensitivity was independently associated each with increased drusen load (13.57 µm increase per -1 dB; P < 0.0001), pigmentary abnormalities (C-1: -2.23 dB; 95% CI, -3.36 to -1.1; P < 0.01), and RPD (C-1: -1.07 dB; 95% CI, -2 to -0.14; P < 0.01). Sensitivity loss in iAMD was biased toward the superior and central macula (P = 0.16 to <0.0001), aligning with structural distributions of features. However, sensitivity loss associated with drusen load also extended to the peripheral macula (P < 0.0001) with paracentral sparing, which was discordant with the central distribution of drusen.
Conclusions: Drusen load, pigmentary abnormalities, and RPD are associated with patterns of retinal sensitivity loss commonly demonstrating superior and central bias. Results highlighted that a clinical focus on these three key iAMD features using structural measures alone does not capture the complex, spatial extent of vision-related functional impairment in iAMD.
Translational Relevance: Defining the spatial patterns of retinal sensitivity loss in iAMD can facilitate a targeted visual field protocol for iAMD assessment.

References

  1. Invest Ophthalmol Vis Sci. 2016 Jun 1;57(7):3118-28 [PMID: 27304843]
  2. PLoS One. 2016 Sep 26;11(9):e0162259 [PMID: 27669525]
  3. Comput Stat Data Anal. 2009 Jan 15;53(3):603-608 [PMID: 20084090]
  4. Acta Ophthalmol. 2008 Jun;86(4):446-55 [PMID: 18070224]
  5. Transl Vis Sci Technol. 2021 Jun 1;10(7):12 [PMID: 34110386]
  6. Sci Rep. 2020 Oct 28;10(1):18527 [PMID: 33116253]
  7. J Biopharm Stat. 2007;17(4):571-82 [PMID: 17613642]
  8. Science. 1945 Jun 29;101(2635):653-8 [PMID: 17777531]
  9. Ophthalmic Physiol Opt. 2021 Jan;41(1):157-164 [PMID: 33063858]
  10. Vision Res. 2002 Jan;42(2):257-69 [PMID: 11809478]
  11. Am J Optom Physiol Opt. 1986 Jan;63(1):22-7 [PMID: 3942185]
  12. Retina. 1994;14(1):65-74 [PMID: 8016466]
  13. Ophthalmology. 2017 Dec;124(12):1764-1777 [PMID: 28847641]
  14. Ophthalmic Surg Lasers Imaging Retina. 2019 Sep 1;50(9):e236-e241 [PMID: 31589764]
  15. Sci Rep. 2021 May 14;11(1):10349 [PMID: 33990634]
  16. Arch Ophthalmol. 1986 Jan;104(1):65-8 [PMID: 3942546]
  17. Ophthalmology. 2013 Apr;120(4):844-51 [PMID: 23332590]
  18. Eye (Lond). 2018 Dec;32(12):1819-1830 [PMID: 30068928]
  19. Ophthalmology. 2022 Oct;129(10):1107-1119 [PMID: 35660417]
  20. Ophthalmic Surg Lasers Imaging Retina. 2017 Apr 1;48(4):312-318 [PMID: 28419396]
  21. Am J Ophthalmol. 2016 May;165:65-77 [PMID: 26940163]
  22. Am J Ophthalmol. 2021 Feb;222:302-309 [PMID: 32360341]
  23. Retina. 2015 Sep;35(9):1726-34 [PMID: 25932557]
  24. J Comp Neurol. 1991 Oct 22;312(4):610-24 [PMID: 1722224]
  25. Indian J Dermatol. 2016 Jul-Aug;61(4):385-92 [PMID: 27512183]
  26. Vision Res. 2005 Feb;45(4):461-8 [PMID: 15610750]
  27. Invest Ophthalmol Vis Sci. 1989 Aug;30(8):1732-7 [PMID: 2759788]
  28. Invest Ophthalmol Vis Sci. 2022 Oct 3;63(11):12 [PMID: 36251316]
  29. Invest Ophthalmol Vis Sci. 2013 May 01;54(5):3560-8 [PMID: 23620428]
  30. Ophthalmol Retina. 2023 Mar;7(3):253-260 [PMID: 36208726]
  31. Ophthalmology. 2020 Mar;127(3):394-409 [PMID: 31708275]
  32. Prog Retin Eye Res. 2021 May;82:100907 [PMID: 33022378]
  33. Invest Ophthalmol Vis Sci. 2021 Apr 1;62(4):2 [PMID: 33792619]
  34. Ophthalmology. 2018 Apr;125(4):537-548 [PMID: 29103793]
  35. J Chiropr Med. 2016 Jun;15(2):155-63 [PMID: 27330520]
  36. Invest Ophthalmol Vis Sci. 2022 Jun 1;63(6):14 [PMID: 35704305]
  37. Invest Ophthalmol Vis Sci. 2020 Mar 9;61(3):55 [PMID: 32232348]
  38. Br J Ophthalmol. 1985 Nov;69(11):824-6 [PMID: 4063248]
  39. Eye (Lond). 1998;12 ( Pt 3b):531-40 [PMID: 9775214]
  40. Graefes Arch Clin Exp Ophthalmol. 2017 Feb;255(2):301-309 [PMID: 27582087]
  41. Transl Vis Sci Technol. 2019 Aug 07;8(4):20 [PMID: 31404428]
  42. Invest Ophthalmol Vis Sci. 2014 Dec 16;56(1):115-21 [PMID: 25515578]
  43. Arch Ophthalmol. 2002 Nov;120(11):1435-42 [PMID: 12427055]
  44. Sci Rep. 2022 Dec 19;12(1):21911 [PMID: 36535990]
  45. Ophthalmol Retina. 2021 Mar;5(3):241-250 [PMID: 32721592]
  46. Invest Ophthalmol Vis Sci. 2021 Oct 4;62(13):13 [PMID: 34661608]
  47. Eye (Lond). 2022 Feb;36(2):392-397 [PMID: 33686233]
  48. JAMA Ophthalmol. 2015 Apr;133(4):442-8 [PMID: 25632841]
  49. Ophthalmol Sci. 2022 Jan 24;2(2):100116 [PMID: 36249700]
  50. Br J Ophthalmol. 2019 Aug;103(8):1092-1098 [PMID: 30269100]
  51. Sci Rep. 2019 Aug 12;9(1):11603 [PMID: 31406197]
  52. Invest Ophthalmol Vis Sci. 1993 Aug;34(9):2638-45 [PMID: 8344787]
  53. Invest Ophthalmol Vis Sci. 2018 Mar 1;59(3):1599-1608 [PMID: 29625486]
  54. Neuron. 2010 May 13;66(3):417-28 [PMID: 20471354]
  55. Transl Vis Sci Technol. 2016 May 20;5(3):10 [PMID: 27247858]
  56. Eur J Ophthalmol. 2022 Jan;32(1):402-409 [PMID: 33648371]
  57. Prog Retin Eye Res. 2013 Nov;37:141-62 [PMID: 24016532]
  58. Invest Ophthalmol Vis Sci. 2015 Feb 10;56(3):1689-700 [PMID: 25670493]
  59. Ophthalmol Retina. 2022 Apr;6(4):284-290 [PMID: 34871775]
  60. Doc Ophthalmol. 2004 Jul;109(1):1-8 [PMID: 15675195]
  61. Invest Ophthalmol Vis Sci. 2020 Mar 9;61(3):2 [PMID: 32150251]
  62. Med Care. 1982 Sep;20(9):959-66 [PMID: 7121100]
  63. Retina. 2015 Aug;35(8):1662-9 [PMID: 26214316]
  64. Br J Ophthalmol. 2003 Sep;87(9):1159-66 [PMID: 12928288]
  65. Invest Ophthalmol Vis Sci. 2018 Aug 1;59(10):4154-4161 [PMID: 30105370]
  66. Ophthalmol Retina. 2019 Dec;3(12):1026-1034 [PMID: 31582304]
  67. Clin Exp Ophthalmol. 2017 Jul;45(5):489-495 [PMID: 28002873]
  68. Prog Retin Eye Res. 2022 May;88:101017 [PMID: 34752916]
  69. J Opt Soc Am A. 1991 Nov;8(11):1818-31 [PMID: 1744778]
  70. Ophthalmol Retina. 2019 Aug;3(8):637-648 [PMID: 31060977]
  71. Invest Ophthalmol Vis Sci. 2013 Nov 11;54(12):7378-85 [PMID: 24135753]
  72. Am J Ophthalmol. 2023 Mar;247:137-144 [PMID: 36228779]
  73. BMC Ophthalmol. 2011 Aug 04;11:20 [PMID: 21816080]
  74. Ophthalmology. 1991 May;98(5 Suppl):766-85 [PMID: 2062512]
  75. Am J Ophthalmol. 1985 Mar 15;99(3):240-51 [PMID: 3976802]
  76. Invest Ophthalmol Vis Sci. 2022 May 2;63(5):36 [PMID: 35622354]
  77. Invest Ophthalmol Vis Sci. 2000 Jul;41(8):2015-8 [PMID: 10892836]
  78. Ophthalmic Physiol Opt. 1993 Jan;13(1):56-67 [PMID: 8510949]
  79. Retina. 2012 Sep;32(8):1492-9 [PMID: 22481478]
  80. Transl Vis Sci Technol. 2017 Aug 09;6(4):15 [PMID: 28798898]
  81. Retina. 2013 Mar;33(3):490-7 [PMID: 23403515]
  82. J Comp Neurol. 1990 Feb 22;292(4):497-523 [PMID: 2324310]
  83. Sci Rep. 2021 Jan 12;11(1):558 [PMID: 33436715]
  84. JAMA Ophthalmol. 2020 Jul 1;138(7):740-747 [PMID: 32379287]
  85. Clin Exp Optom. 2021 Sep;104(7):795-804 [PMID: 33689627]
  86. Invest Ophthalmol Vis Sci. 2000 Jan;41(1):267-73 [PMID: 10634630]
  87. Transl Vis Sci Technol. 2021 Oct 4;10(12):14 [PMID: 34636906]
  88. PLoS One. 2013 Sep 09;8(9):e73990 [PMID: 24040139]
  89. Invest Ophthalmol Vis Sci. 2022 Feb 1;63(2):32 [PMID: 35212721]
  90. J Ophthalmic Vis Res. 2021 Jul 29;16(3):384-392 [PMID: 34394867]
  91. Invest Ophthalmol Vis Sci. 2015 Mar 03;56(3):2100-6 [PMID: 25736790]
  92. Br J Ophthalmol. 2017 Feb;101(2):198-203 [PMID: 27044341]
  93. Invest Ophthalmol Vis Sci. 2000 Feb;41(2):496-504 [PMID: 10670481]
  94. Invest Ophthalmol Vis Sci. 2016 Jul 1;57(8):3714-22 [PMID: 27415789]
  95. Ophthalmology. 2023 Feb;130(2):205-212 [PMID: 36103931]
  96. Invest Ophthalmol Vis Sci. 2022 Oct 03;63(11):24 [PMID: 36306145]
  97. Prog Retin Eye Res. 2016 Jul;53:70-106 [PMID: 27173377]
  98. Clin Ophthalmol. 2008 Jun;2(2):413-24 [PMID: 19668732]
  99. Front Neurol. 2018 Dec 21;9:1140 [PMID: 30622511]
  100. Invest Ophthalmol Vis Sci. 2003 Oct;44(10):4481-8 [PMID: 14507896]
  101. Graefes Arch Clin Exp Ophthalmol. 1994 Sep;232(9):509-15 [PMID: 7959088]
  102. J Am Stat Assoc. 2014 Oct;109(508):1517-1532 [PMID: 25729117]
  103. Retina. 2013 Feb;33(2):265-76 [PMID: 23266879]
  104. Biochem Med (Zagreb). 2015 Jun 05;25(2):141-51 [PMID: 26110027]
  105. Jpn J Ophthalmol. 2014 Mar;58(2):155-65 [PMID: 24327061]
  106. PLoS One. 2013 Dec 31;8(12):e83759 [PMID: 24391822]
  107. Prev Sci. 2013 Apr;14(2):111-20 [PMID: 21562742]
  108. Invest Ophthalmol Vis Sci. 2019 Jul 1;60(8):2848-2859 [PMID: 31260035]
  109. Ophthalmologica. 1986;193(1-2):56-74 [PMID: 3822395]
  110. Can J Ophthalmol. 2013 Oct;48(5):358-63 [PMID: 24093180]
  111. JAMA Ophthalmol. 2019 Jul 1;137(7):738-744 [PMID: 31021381]
  112. Curr Eye Res. 2022 Nov;47(11):1547-1552 [PMID: 36183241]
  113. J Comp Neurol. 2019 Jan 1;527(1):87-116 [PMID: 27447117]
  114. Sci Transl Med. 2018 Nov 7;10(466): [PMID: 30404862]

MeSH Term

Humans
Retina
Macular Degeneration
Retinal Drusen
Macula Lutea
Transcription Factors

Chemicals

Transcription Factors

Word Cloud

Created with Highcharts 10.0.0iAMDP0dB<sensitivityloss-1drusenload95%CI-00001spatialpatternsretinalkeyfeaturessensitivitiespigmentaryabnormalitiesRPD-23601associatedcentralthreeC-2C-1decreasedC-1:SensitivitysuperiormaculastructuralPurpose:examineintermediateage-relatedmaculardegenerationMethods:One-hundredindividuals5347normalunderwent10-2mesopicmicroperimetrytestingoneeyePointwisecorrectedagesexstatusco-presenceco-localizedfeatures:reticularpseudodrusenClusterslabeledranksmagnitudeC0derivedpointwiseassessedquadrantseccentricity/ringsResults:Twoclustersevidentversusnormal:67confidenceintervals98935Oneclusterindependentlyincreased1357µmincreaseper23-310714biasedtoward=16<0aligningdistributionsHoweveralsoextendedperipheralparacentralsparingdiscordantdistributionConclusions:DrusencommonlydemonstratingbiasResultshighlightedclinicalfocususingmeasuresalonecapturecomplexextentvision-relatedfunctionalimpairmentTranslationalRelevance:DefiningcanfacilitatetargetedvisualfieldprotocolassessmentSpatialClusterPatternsRetinalLossIntermediateAge-RelatedMacularDegenerationFeatures

Similar Articles

Cited By