Enhancing diffuse correlation spectroscopy pulsatile cerebral blood flow signal with near-infrared spectroscopy photoplethysmography.

Kuan Cheng Wu, Alyssa Martin, Marco Renna, Mitchell Robinson, Nisan Ozana, Stefan A Carp, Maria Angela Franceschini
Author Information
  1. Kuan Cheng Wu: Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, United States. ORCID
  2. Alyssa Martin: Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, United States.
  3. Marco Renna: Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, United States.
  4. Mitchell Robinson: Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, United States. ORCID
  5. Nisan Ozana: Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, United States. ORCID
  6. Stefan A Carp: Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, United States. ORCID
  7. Maria Angela Franceschini: Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, United States. ORCID

Abstract

Significance: Combining near-infrared spectroscopy (NIRS) and diffuse correlation spectroscopy (DCS) allows for quantifying cerebral blood volume, flow, and oxygenation changes continuously and non-invasively. As recently shown, the DCS pulsatile cerebral blood flow index () can be used to quantify critical closing pressure (CrCP) and cerebrovascular resistance ().
Aim: Although current DCS technology allows for reliable monitoring of the slow hemodynamic changes, resolving pulsatile blood flow at large source-detector separations, which is needed to ensure cerebral sensitivity, is challenging because of its low signal-to-noise ratio (SNR). Cardiac-gated averaging of several arterial pulse cycles is required to obtain a meaningful waveform.
Approach: Taking advantage of the high SNR of NIRS, we demonstrate a method that uses the NIRS photoplethysmography (NIRS-PPG) pulsatile signal to model DCS , reducing the coefficient of variation of the recovered pulsatile waveform () and allowing for an unprecedented temporal resolution (266 Hz) at a large source-detector separation ().
Results: In 10 healthy subjects, we verified the quality of the NIRS-PPG during common tasks, showing high fidelity against ( ). We recovered CrCP and at 0.25 Hz, times faster than previously achieved with DCS.
Conclusions: NIRS-PPG improves DCS SNR, reducing the number of gate-averaged heartbeats required to recover CrCP and .

Keywords

References

  1. J Affect Disord. 2004 Oct 1;82(1):85-92 [PMID: 15465580]
  2. J Appl Physiol (1985). 2017 Jul 1;123(1):62-70 [PMID: 28360122]
  3. Physiol Meas. 2003 May;24(2):297-307 [PMID: 12812416]
  4. J Neurosurg. 2015 Sep;123(3):638-48 [PMID: 25574566]
  5. Medicina (Kaunas). 2022 Oct 06;58(10): [PMID: 36295560]
  6. Neuroimage. 2017 Nov 15;162:199-213 [PMID: 28866349]
  7. Neuroimage. 2014 Jan 15;85 Pt 1:51-63 [PMID: 23770408]
  8. Stroke. 1972 Sep-Oct;3(5):566-75 [PMID: 4569138]
  9. Magn Reson Imaging. 2014 Apr;32(3):236-40 [PMID: 24468081]
  10. Neurophotonics. 2016 Jul;3(3):031412 [PMID: 27335889]
  11. Ann Biomed Eng. 2013 Feb;41(2):223-37 [PMID: 22956158]
  12. Anaesthesia. 2001 Jun;56(6):556-61 [PMID: 11412162]
  13. Psychophysiology. 2014 Nov;51(11):1072-88 [PMID: 25100639]
  14. Cephalalgia. 1995 Dec;15(6):494-8 [PMID: 8706113]
  15. Opt Express. 2006 Feb 6;14(3):1125-44 [PMID: 19503435]
  16. Philos Trans A Math Phys Eng Sci. 2011 Nov 28;369(1955):4407-24 [PMID: 22006898]
  17. Neurophotonics. 2021 Jul;8(3):035006 [PMID: 34423069]
  18. J Appl Physiol (1985). 2017 Nov 1;123(5):1071-1080 [PMID: 28663374]
  19. Sensors (Basel). 2020 Aug 28;20(17): [PMID: 32872310]
  20. Science. 1977 Dec 23;198(4323):1264-7 [PMID: 929199]
  21. Front Neurol. 2021 Jan 28;11:580859 [PMID: 33584492]
  22. Eur J Appl Physiol. 2008 Sep;104(1):1-7 [PMID: 18496707]
  23. J Neuroimaging. 2002 Jul;12(3):252-8 [PMID: 12116744]
  24. Anaesthesia. 2001 Jun;56(6):551-5 [PMID: 11412161]
  25. JTCVS Tech. 2021 Jan 29;7:161-177 [PMID: 34318236]
  26. Neurocrit Care. 2012 Aug;17(1):58-66 [PMID: 22311229]
  27. Ultrasound Med Biol. 2004 Oct;30(10):1329-35 [PMID: 15582232]
  28. Surg Neurol. 2004 Jul;62(1):45-51; discussion 51 [PMID: 15226070]
  29. J Appl Physiol (1985). 2015 Apr 1;118(7):858-62 [PMID: 25614597]
  30. J Neurosurg. 1974 Nov;41(5):590-6 [PMID: 4422124]
  31. Parkinsonism Relat Disord. 2009 Feb;15(2):94-100 [PMID: 18440850]
  32. J Cereb Blood Flow Metab. 2019 Dec;39(12):2471-2485 [PMID: 30204040]
  33. J Biomed Opt. 2021 Mar;26(3): [PMID: 33774980]
  34. Biomed Opt Express. 2020 Feb 19;11(3):1462-1476 [PMID: 32206422]
  35. J Biomed Opt. 2007 Jan-Feb;12(1):014033 [PMID: 17343508]
  36. J Cereb Blood Flow Metab. 2017 Aug;37(8):2691-2705 [PMID: 28541158]
  37. Neurophotonics. 2022 Oct;9(4):045001 [PMID: 36247716]
  38. Phys Med Biol. 1988 Dec;33(12):1433-42 [PMID: 3237772]
  39. Neurophotonics. 2022 Jul;9(3):035004 [PMID: 36039170]
  40. Opt Lett. 2004 Aug 1;29(15):1766-8 [PMID: 15352363]
  41. Neurophotonics. 2014 Jul;1(1): [PMID: 25453036]
  42. Phys Rev Lett. 1995 Aug 28;75(9):1855-1858 [PMID: 10060408]
  43. J Biomed Opt. 2020 Sep;25(9): [PMID: 32996299]
  44. Crit Care Med. 2015 Apr;43(4):747-56 [PMID: 25513787]
  45. Biochim Biophys Acta. 1988 Mar 30;933(1):184-92 [PMID: 2831976]
  46. Br J Radiol. 2014 Nov;87(1043):20140454 [PMID: 25189121]
  47. Opt Express. 2020 Apr 13;28(8):11191-11214 [PMID: 32403635]
  48. J Appl Physiol (1985). 1991 Jun;70(6):2691-6 [PMID: 1909316]
  49. Neuroimage. 2014 Jan 15;85 Pt 1:279-86 [PMID: 23370052]
  50. J Biomed Opt. 2012 Aug;17(8):081406-1 [PMID: 23224167]
  51. J Neurosurg. 1999 Jan;90(1):109-15 [PMID: 10413163]
  52. Neurophotonics. 2017 Jan;4(1):015004 [PMID: 28386576]
  53. Neuroimage. 2022 Aug 1;256:119216 [PMID: 35452803]
  54. Clin Sci (Lond). 2002 Oct;103(4):371-7 [PMID: 12241535]
  55. Neurophotonics. 2014 Jun 20;1(1): [PMID: 25593978]
  56. Brain Sci. 2021 May 31;11(6): [PMID: 34072651]
  57. J Neurotrauma. 2020 Dec 1;37(23):2569-2579 [PMID: 32460617]
  58. Am J Physiol Heart Circ Physiol. 2001 May;280(5):H2162-74 [PMID: 11299218]
  59. Front Physiol. 2022 Mar 01;12:808451 [PMID: 35300400]
  60. Philos Trans A Math Phys Eng Sci. 2011 Nov 28;369(1955):4390-406 [PMID: 22006897]
  61. J Cereb Blood Flow Metab. 2014 Jan;34(1):87-94 [PMID: 24064492]

Grants

  1. R01 HD091067/NICHD NIH HHS
  2. T32 EB001680/NIBIB NIH HHS
  3. U01 EB028660/NIBIB NIH HHS

Word Cloud

Created with Highcharts 10.0.0spectroscopyDCScerebralbloodflowpulsatilenear-infraredNIRSdiffusecorrelationCrCPSNRNIRS-PPGallowschangescriticalclosingpressurecerebrovascularresistancelargesource-detectorrequiredwaveformhighphotoplethysmographysignalreducingrecoveredSignificance:Combiningquantifyingvolumeoxygenationcontinuouslynon-invasivelyrecentlyshownindexcanusedquantifyAim:Althoughcurrenttechnologyreliablemonitoringslowhemodynamicresolvingseparationsneededensuresensitivitychallenginglowsignal-to-noiseratioCardiac-gatedaveragingseveralarterialpulsecyclesobtainmeaningfulApproach:Takingadvantagedemonstratemethodusesmodelcoefficientvariationallowingunprecedentedtemporalresolution266 HzseparationResults:10healthysubjectsverifiedqualitycommontasksshowingfidelity025 HztimesfasterpreviouslyachievedConclusions:improvesnumbergate-averagedheartbeatsrecoverEnhancing

Similar Articles

Cited By