Effect of Sodium Nitrite, Nisin and Lactic Acid on the Prevalence and Antibiotic Resistance Patterns of Naturally Present in Poultry.

Cristina Rodríguez-Melcón, Alexandra Esteves, Javier Carballo, Carlos Alonso-Calleja, Rosa Capita
Author Information
  1. Cristina Rodríguez-Melcón: Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071 León, Spain.
  2. Alexandra Esteves: Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal.
  3. Javier Carballo: Area of Food Technology, Faculty of Sciences, University of Vigo, E-32004 Ourense, Spain. ORCID
  4. Carlos Alonso-Calleja: Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071 León, Spain. ORCID
  5. Rosa Capita: Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071 León, Spain. ORCID

Abstract

The impact of treating minced chicken meat with sodium nitrite (SN, 100 ppm), nisin (Ni, 10 ppm) and lactic acid (LA, 3000 ppm) on the levels of some microbial groups indicating hygiene quality were investigated. Specifically, aerobic plate counts and culture-based counts of psychrotrophic microorganisms and enterobacteria were obtained. Additionally, the prevalence of and the resistance of 245 isolates from this bacterium to 15 antibiotics were documented. was isolated using the ISO 11290-1:2017 method and confirmed with polymerase chain reaction using the gene. Antibiotic resistance was established using the disc diffusion technique (EUCAST and CLSI criteria). Twenty-four hours after treatment, the microbial load (log cfu/g) was reduced ( < 0.05) relative to controls in those samples treated with LA, with counts of 5.51 ± 1.05 (LA-treated samples) vs. 7.53 ± 1.02 (control) for APC, 5.59 ± 1.14 (LA) vs. 7.13 ± 1.07 (control) for psychrotrophic microorganisms and 2.33 ± 0.51 (LA) vs. 4.23 ± 0.88 (control) for enterobacteria. was detected in 70% (control samples), 60% (samples receiving SN), 65% (Ni) and 50% (LA) ( > 0.05) of samples. All strains showed resistance to multiple antimicrobials (between 3 and 12). In all, 225 isolates (91.8%) showed a multi-drug resistant (MDR) phenotype, and one isolate (0.4%) showed an extensively drug-resistant (XDR) phenotype. The mean number of resistances per strain was lower ( < 0.01) in the control samples, at 5.77 ± 1.22, than in those receiving treatment, at 6.39 ± 1.51. It is suggested that the use of food additives might increase the prevalence of resistance to antibiotics in , although additional studies would be necessary to verify this finding by analyzing a higher number of samples and different foodstuffs and by increasing the number of antimicrobial compounds and concentrations to be tested.

Keywords

References

  1. Int J Food Microbiol. 2012 Feb 15;153(3):281-7 [PMID: 22208955]
  2. Food Microbiol. 2023 Jun;112:104210 [PMID: 36906325]
  3. J Food Prot. 2007 Apr;70(4):1017-20 [PMID: 17477277]
  4. Food Microbiol. 2018 Dec;76:513-517 [PMID: 30166181]
  5. Meat Sci. 2011 Jun;88(2):256-60 [PMID: 21251765]
  6. Pol J Vet Sci. 2005;8(1):37-40 [PMID: 15794472]
  7. Meat Sci. 2012 Nov;92(3):274-9 [PMID: 22464105]
  8. Int J Food Microbiol. 2005 Mar 1;99(1):1-6 [PMID: 15718024]
  9. J Food Prot. 2000 Jan;63(1):131-6 [PMID: 10643784]
  10. J Food Prot. 2002 Jul;65(7):1200-6 [PMID: 12117260]
  11. Foods. 2016 Oct 31;5(4): [PMID: 28231169]
  12. Int J Food Microbiol. 2002 Jan 30;72(1-2):137-46 [PMID: 11843405]
  13. J Food Sci. 2016 Jun;81(6):M1466-71 [PMID: 27096939]
  14. Food Microbiol. 2013 May;34(1):112-7 [PMID: 23498186]
  15. Vet Rec. 2014 Oct 4;175(13):325 [PMID: 24899065]
  16. Foods. 2022 Oct 25;11(21): [PMID: 36359973]
  17. J Food Prot. 2011 Jun;74(6):1017-21 [PMID: 21669084]
  18. J Food Prot. 2002 Dec;65(12):1888-93 [PMID: 12495006]
  19. Int J Food Microbiol. 2004 Feb 1;90(3):349-56 [PMID: 14751690]
  20. Int J Food Microbiol. 2007 Apr 20;115(3):268-80 [PMID: 17320231]
  21. J Antimicrob Chemother. 2007 Dec;60(6):1273-80 [PMID: 17897935]
  22. Poult Sci. 2013 Jun;92(6):1664-9 [PMID: 23687164]
  23. Meat Sci. 2002 Mar;60(3):295-8 [PMID: 22063401]
  24. Int J Food Microbiol. 2001 Apr 11;65(1-2):75-82 [PMID: 11322703]
  25. J Food Prot. 2018 Jan;81(1):17-24 [PMID: 29240465]
  26. Food Microbiol. 2008 Feb;25(1):120-7 [PMID: 17993385]
  27. Foods. 2019 Nov 03;8(11): [PMID: 31684121]
  28. Front Vet Sci. 2017 Aug 10;4:126 [PMID: 28848739]
  29. Foods. 2018 May 03;7(5): [PMID: 29751496]
  30. EFSA J. 2018 Dec 12;16(12):e05482 [PMID: 32625776]
  31. Int J Food Microbiol. 2016 Dec 05;238:139-145 [PMID: 27620825]
  32. Food Microbiol. 2019 Sep;82:533-540 [PMID: 31027816]
  33. Food Microbiol. 2023 May;111:104207 [PMID: 36681394]
  34. Food Sci Nutr. 2020 Feb 22;8(3):1325-1334 [PMID: 32180942]
  35. Meat Sci. 2002 Sep;62(1):45-50 [PMID: 22061190]
  36. J Food Prot. 2021 Sep 1;84(9):1567-1574 [PMID: 33901291]
  37. Appl Environ Microbiol. 2012 May;78(9):3087-97 [PMID: 22367085]
  38. Appl Environ Microbiol. 2000 May;66(5):2001-5 [PMID: 10788373]
  39. Clin Microbiol Infect. 2012 Mar;18(3):268-81 [PMID: 21793988]
  40. J Food Prot. 2014 Aug;77(8):1407-10 [PMID: 25198605]
  41. Asian-Australas J Anim Sci. 2018 Aug;31(8):1073-1077 [PMID: 29531192]
  42. Microorganisms. 2020 Aug 12;8(8): [PMID: 32806643]
  43. Appl Environ Microbiol. 2014 Feb;80(4):1268-80 [PMID: 24317080]
  44. EFSA J. 2022 Dec 13;20(12):e07666 [PMID: 36524203]
  45. Br Poult Sci. 2008 Sep;49(5):560-5 [PMID: 18836902]
  46. J Food Prot. 2002 Apr;65(4):709-25 [PMID: 11952224]
  47. J Food Prot. 2015 Feb;78(2):436-45 [PMID: 25710164]
  48. Int J Food Sci. 2019 Apr 18;2019:7835253 [PMID: 31139641]
  49. Meat Sci. 2017 Jul;129:169-175 [PMID: 28324868]
  50. Crit Rev Food Sci Nutr. 2013;53(1):11-48 [PMID: 23035919]
  51. Foodborne Pathog Dis. 2014 Dec;11(12):969-73 [PMID: 25407460]
  52. Meat Sci. 2000 Nov;56(3):215-9 [PMID: 22062071]
  53. Antibiotics (Basel). 2022 Dec 16;11(12): [PMID: 36551484]
  54. Lett Appl Microbiol. 2003;37(5):421-3 [PMID: 14633115]
  55. Food Microbiol. 2020 Aug;89:103417 [PMID: 32138987]
  56. Poult Sci. 2017 Sep 1;96(11):4046-4052 [PMID: 29050434]
  57. J Food Prot. 2005 Apr;68(4):855-9 [PMID: 15830684]
  58. Meat Sci. 2013 May;94(1):69-76 [PMID: 23391864]
  59. Poult Sci. 2009 Aug;88(8):1765-72 [PMID: 19590093]
  60. Biology (Basel). 2021 Dec 29;11(1): [PMID: 35053044]
  61. Pathogens. 2019 Nov 20;8(4): [PMID: 31756896]
  62. Int J Food Microbiol. 1999 Dec 1;53(1):75-80 [PMID: 10598117]

Grants

  1. LE018P20/Junta de Castilla y León

Word Cloud

Created with Highcharts 10.0.0±samples01LAresistancecontrolppmcountsusing05551vsshowednumberchickenmeatSNNimicrobialqualitypsychrotrophicmicroorganismsenterobacteriaprevalenceisolatesantibioticsAntibiotictreatment<7receivingphenotypefoodadditivesimpacttreatingmincedsodiumnitrite100nisin10lacticacid3000levelsgroupsindicatinghygieneinvestigatedSpecificallyaerobicplateculture-basedobtainedAdditionally245bacterium15documentedisolatedISO11290-1:2017methodconfirmedpolymerasechainreactiongeneestablisheddiscdiffusiontechniqueEUCASTCLSIcriteriaTwenty-fourhoursloadlogcfu/greducedrelativecontrolstreatedLA-treated5302APC5914130723342388detected70%60%65%50%>strainsmultipleantimicrobials312225918%multi-drugresistantMDRoneisolate4%extensivelydrug-resistantXDRmeanresistancesperstrainlower017722639suggestedusemightincreasealthoughadditionalstudiesnecessaryverifyfindinganalyzinghigherdifferentfoodstuffsincreasingantimicrobialcompoundsconcentrationstestedEffectSodiumNitriteNisinLacticAcidPrevalenceResistancePatternsNaturallyPresentPoultryListeriamonocytogenesantibiotichygienic

Similar Articles

Cited By