Hormonal Regulation and Stimulation Response of L. Homolog Overexpression on Tobacco Leaf Growth by Transcriptome Analysis.

Qiuhong Wu, Dongchao Zheng, Na Lian, Xuli Zhu, Jun Wu
Author Information
  1. Qiuhong Wu: College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
  2. Dongchao Zheng: Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China.
  3. Na Lian: College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
  4. Xuli Zhu: College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China. ORCID
  5. Jun Wu: Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China. ORCID

Abstract

The () gene encodes the florigen protein, which primarily regulates the flowering time in plants. Recent studies have shown that genes also significantly affect plant growth and development. The gene overexpression in plants promotes flowering and suppresses leaf and stem development. This study aimed to conduct a transcriptome analysis to investigate the multiple effects of L. homolog () overexpression on leaf growth in tobacco plants. The findings revealed that overexpression affected various biological processes during leaf development, including plant hormone levels and signal transduction, lipid oxidation metabolism, terpenoid metabolism, and the jasmonic-acid-mediated signaling pathway. These results suggested that the effects of overexpression in plants were complex and multifaceted, and the combination of these factors might contribute to a reduction in the leaf size. This study comprehensively analyzed the effects of on leaf development at the transcriptome level and provided new insights into the function of and its homologous genes.

Keywords

References

  1. Plant Cell. 2007 Jul;19(7):2225-45 [PMID: 17616737]
  2. J Exp Bot. 2010 Jun;61(10):2549-60 [PMID: 20406786]
  3. Hortic Res. 2016 Oct 26;3:16053 [PMID: 27818778]
  4. Plant Cell Physiol. 2008 Nov;49(11):1645-58 [PMID: 18849573]
  5. Plant Cell. 2009 Jan;21(1):131-45 [PMID: 19151223]
  6. BMC Plant Biol. 2010 Aug 11;10:171 [PMID: 20701756]
  7. BMC Plant Biol. 2014 May 08;14:125 [PMID: 24886195]
  8. PLoS One. 2020 Jan 28;15(1):e0227199 [PMID: 31990916]
  9. Curr Biol. 2011 Jul 26;21(14):1232-8 [PMID: 21737277]
  10. New Phytol. 2016 Nov;212(3):730-744 [PMID: 27375201]
  11. Curr Opin Plant Biol. 2016 Oct;33:77-82 [PMID: 27348248]
  12. Bioinformatics. 2009 Apr 15;25(8):1091-3 [PMID: 19237447]
  13. Nature. 2011 Jul 31;476(7360):332-5 [PMID: 21804566]
  14. Front Plant Sci. 2020 Jan 10;10:1666 [PMID: 31998348]
  15. Plant Physiol Biochem. 2021 Apr;161:98-112 [PMID: 33581623]
  16. Plant Cell. 2020 Dec;32(12):4002-4016 [PMID: 33037144]
  17. Mol Plant Microbe Interact. 2013 Aug;26(8):977-86 [PMID: 23634839]
  18. J Exp Bot. 2019 Jan 1;70(1):17-27 [PMID: 30239806]
  19. Front Plant Sci. 2014 Sep 16;5:465 [PMID: 25278944]
  20. Plant Physiol. 2012 Mar;158(3):1193-207 [PMID: 22227969]
  21. Curr Biol. 2010 Apr 13;20(7):629-35 [PMID: 20303265]
  22. Plant Cell Environ. 2012 Oct;35(10):1742-55 [PMID: 22697796]
  23. Nucleic Acids Res. 2013 Jan;41(Database issue):D808-15 [PMID: 23203871]
  24. Plant Cell. 2011 Mar;23(3):942-60 [PMID: 21441432]
  25. Plants (Basel). 2022 Apr 04;11(7): [PMID: 35406959]
  26. Proc Natl Acad Sci U S A. 2006 Apr 18;103(16):6398-403 [PMID: 16606827]
  27. Nat Biotechnol. 2015 Mar;33(3):290-5 [PMID: 25690850]
  28. Plant Commun. 2019 Nov 26;1(1):100008 [PMID: 33404547]
  29. J Exp Bot. 2021 Mar 29;72(7):2301-2311 [PMID: 33449083]
  30. Science. 2005 Aug 12;309(5737):1056-9 [PMID: 16099980]
  31. Sci Rep. 2021 Jun 30;11(1):13612 [PMID: 34193940]
  32. Plant J. 2003 Jan;33(2):221-33 [PMID: 12535337]
  33. Genome Res. 2003 Nov;13(11):2498-504 [PMID: 14597658]
  34. Curr Biol. 2007 Jun 19;17(12):1055-60 [PMID: 17540570]
  35. Annu Rev Plant Biol. 2008;59:573-94 [PMID: 18444908]
  36. Plant Cell Physiol. 2001 Sep;42(9):1017-23 [PMID: 11577198]
  37. Mol Cell Biol. 1995 Feb;15(2):1049-59 [PMID: 7823920]
  38. Proc Natl Acad Sci U S A. 2016 May 24;113(21):6071-6 [PMID: 27118848]
  39. Bioinformatics. 2010 Jan 1;26(1):136-8 [PMID: 19855105]
  40. Annu Rev Plant Biol. 2020 Apr 29;71:379-402 [PMID: 32131604]
  41. Bioinformatics. 2005 Aug 15;21(16):3448-9 [PMID: 15972284]
  42. Plant Cell. 2019 Jan;31(1):9-10 [PMID: 30626620]
  43. BMC Genomics. 2012 Oct 03;13:524 [PMID: 23033915]
  44. Genes Dev. 2002 Aug 1;16(15):2006-20 [PMID: 12154129]
  45. Plant Cell. 2011 Jan;23(1):130-46 [PMID: 21282527]
  46. Proc Natl Acad Sci U S A. 2009 May 19;106(20):8392-7 [PMID: 19416824]
  47. Science. 2007 May 18;316(5827):1030-3 [PMID: 17446353]
  48. Mol Cells. 2019 May 31;42(5):406-417 [PMID: 31085810]
  49. Front Plant Sci. 2015 Jun 17;6:454 [PMID: 26136765]
  50. Nature. 2007 Aug 9;448(7154):666-71 [PMID: 17637675]
  51. Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 [PMID: 9254694]
  52. Methods. 2001 Dec;25(4):402-8 [PMID: 11846609]
  53. Nat Methods. 2015 Apr;12(4):357-60 [PMID: 25751142]
  54. Mol Genet Genomics. 2010 Mar;283(3):233-41 [PMID: 20098998]
  55. Front Plant Sci. 2016 Jun 28;7:936 [PMID: 27446164]
  56. Plant Cell. 2014 Feb;26(2):552-64 [PMID: 24532592]
  57. Nature. 2011 Sep 25;478(7367):119-22 [PMID: 21947007]
  58. Front Plant Sci. 2022 Jun 16;13:922919 [PMID: 35783923]
  59. Proc Natl Acad Sci U S A. 2019 Aug 6;116(32):16127-16136 [PMID: 31324744]
  60. PLoS One. 2017 Jul 28;12(7):e0181460 [PMID: 28753668]
  61. Genome Res. 1998 Mar;8(3):175-85 [PMID: 9521921]
  62. Plant Direct. 2021 Feb 16;5(2):e00308 [PMID: 33644633]

Grants

  1. 2023YFSY0057/Department of Science and Technology of Sichuan Province
  2. 6232028/Beijing Natural Science Foundation

MeSH Term

Jatropha
Nicotiana
Gene Expression Profiling
Transcriptome
Plant Leaves

Word Cloud

Created with Highcharts 10.0.0leafplantsdevelopmentoverexpressiontranscriptomeeffectsgenefloweringgenesplantgrowthstudyanalysisLtobaccometabolismencodesflorigenproteinprimarilyregulatestimeRecentstudiesshownalsosignificantlyaffectpromotessuppressesstemaimedconductinvestigatemultiplehomologfindingsrevealedaffectedvariousbiologicalprocessesincludinghormonelevelssignaltransductionlipidoxidationterpenoidjasmonic-acid-mediatedsignalingpathwayresultssuggestedcomplexmultifacetedcombinationfactorsmightcontributereductionsizecomprehensivelyanalyzedlevelprovidednewinsightsfunctionhomologousHormonalRegulationStimulationResponseHomologOverexpressionTobaccoLeafGrowthTranscriptomeAnalysisFloweringlocusTJatrophacurcasphytohormone

Similar Articles

Cited By (1)