Profiles of bacterial communities and environmental factors associated with proliferation of malaria vector mosquitoes within the Kenyan Coast.

Josphat Mutinda, Samuel Mwakisha Mwamburi, Kennedy Omondi Oduor, Maurice Vincent Omolo, Regina Mongina Ntabo, James Muhunyu Gathiru, Joseph Mwangangi, James O M Nonoh
Author Information
  1. Josphat Mutinda: Kenyatta University, P.O. Box 43844-00100, Nairobi, Kenya. ORCID
  2. Samuel Mwakisha Mwamburi: Kenya Marine and Fisheries Research Institute, P.O Box 81651- 80100, English Point, Mkomani, Mombasa, Kenya. ORCID
  3. Kennedy Omondi Oduor: Kenya Marine and Fisheries Research Institute, P.O Box 81651- 80100, English Point, Mkomani, Mombasa, Kenya. ORCID
  4. Maurice Vincent Omolo: Masinde Muliro University of Science and Technology, Centre for African Medicinal and Nutritional Flora and Fauna (CAMNFF), P.O Box 190-50100, Kakamega, Kenya. ORCID
  5. Regina Mongina Ntabo: Kenyatta University, P.O. Box 43844-00100, Nairobi, Kenya. ORCID
  6. James Muhunyu Gathiru: Kenyatta University, P.O. Box 43844-00100, Nairobi, Kenya.
  7. Joseph Mwangangi: Kenya Medical Research Institute (KEMRI), Centre for Geographic Medicine Research - Coast, Kilifi P.O. Box 428, Kilifi - 80108, Kenya.
  8. James O M Nonoh: Maseno University, Private Bag, Maseno, Kenya. ORCID

Abstract

Background: Since mosquitoes which transmit and maintain the malaria parasite breed in the outdoor environment, there is an urgent need to manage these mosquito breeding sites. In order to elaborate more on the ecological landscape of mosquito breeding sites, the bacterial community structure and their interactions with physicochemical factors in mosquito larval habitats was characterised in Kwale County (Kenya), where malaria is endemic.
Methods: The physical characteristics and water physicochemical parameters of the habitats were determined and recorded. Water samples were also collected from the identified sites for total metagenomic DNA extraction in order to characterise the bacterial communities within the breeding sites.
Results and Discussion: Sites where mosquito larvae were found were described as positive and those without mosquito larvae as negative. Electrical conductivity, total dissolved solids, salinity and ammonia were lower in the rainy season than in the dry season, which also coincided with a high proportion of positive sites. Pseudomonadota was the most common phyla recovered in all samples followed by Bacteroidota and then Actinomycetota. The presence or absence of mosquito larvae in a potential proliferation site was not related to the bacterial community structure in the sampled sites, but was positively correlated with bacterial richness and evenness.
Conclusion: Generally, the presence of mosquito larvae was found to be positively correlated with rainy season, bacterial richness and evenness, and negatively correlated with electrical conductivity, total dissolved solids, salinity and ammonia. The findings of this study have implications for predicting the potential of environmental water samples to become mosquito proliferation sites.

Keywords

References

  1. Water Res. 2021 Nov 1;206:117730 [PMID: 34619413]
  2. Appl Environ Microbiol. 2009 Dec;75(23):7537-41 [PMID: 19801464]
  3. Parasit Vectors. 2012 May 19;5:96 [PMID: 22608179]
  4. Infect Genet Evol. 2014 Dec;28:715-24 [PMID: 25283802]
  5. Med Vet Entomol. 2000 Dec;14(4):361-8 [PMID: 11129699]
  6. J Am Mosq Control Assoc. 2008 Jun;24(2):219-27 [PMID: 18666529]
  7. Parasit Vectors. 2021 Apr 7;14(1):193 [PMID: 33827667]
  8. Parasit Vectors. 2022 Nov 16;15(1):430 [PMID: 36384974]
  9. Mem Inst Oswaldo Cruz. 2007 Dec;102(8):919-24 [PMID: 18209929]
  10. Bull World Health Organ. 2009 Sep;87(9):655-65 [PMID: 19784445]
  11. J Med Entomol. 2008 Nov;45(6):1039-49 [PMID: 19058627]
  12. PLoS Negl Trop Dis. 2020 Jan 16;14(1):e0007831 [PMID: 31945061]
  13. Parasit Vectors. 2015 Jul 05;8:356 [PMID: 26142904]
  14. Ethiop J Health Sci. 2021 Mar;31(2):247-256 [PMID: 34158776]
  15. Front Microbiol. 2021 Jan 28;12:624170 [PMID: 33584626]
  16. Parasit Vectors. 2019 May 8;12(1):217 [PMID: 31068213]
  17. Malar J. 2015 Jun 17;14:244 [PMID: 26082138]
  18. Sci Adv. 2017 Aug 16;3(8):e1700585 [PMID: 28835919]
  19. Access Microbiol. 2023 Aug 17;5(8): [PMID: 37691847]
  20. Nat Methods. 2016 Jul;13(7):581-3 [PMID: 27214047]
  21. Malar J. 2015 Nov 11;14:447 [PMID: 26558365]
  22. J Med Entomol. 2003 Nov;40(6):921-9 [PMID: 14765671]
  23. Malar J. 2020 Feb 13;19(1):70 [PMID: 32054502]
  24. J Microbiol Biotechnol. 2017 Dec 28;27(12):2089-2093 [PMID: 29032640]
  25. Parasit Vectors. 2011 Jul 06;4:130 [PMID: 21733150]
  26. Stat Methods Med Res. 2017 Jun;26(3):1323-1340 [PMID: 25834090]
  27. Malar J. 2013 Jan 08;12:13 [PMID: 23297732]
  28. Ethiop J Health Sci. 2011 Mar;21(1):57-66 [PMID: 22434986]
  29. Microb Ecol. 2019 Nov;78(4):781-791 [PMID: 30989355]
  30. Parasit Vectors. 2014 Aug 24;7:391 [PMID: 25151134]
  31. Acta Trop. 2004 Jan;89(2):187-92 [PMID: 14732240]
  32. J Vis Exp. 2010 Nov 22;(45): [PMID: 21189466]
  33. Parasit Vectors. 2013 Jan 16;6:13 [PMID: 23324330]
  34. Parasit Vectors. 2017 Jun 24;10(1):304 [PMID: 28645303]
  35. J Vis Exp. 2012 Apr 20;(62): [PMID: 22546956]
  36. Mol Ecol. 2016 Nov;25(22):5806-5826 [PMID: 27718295]
  37. J Vector Borne Dis. 2011 Mar;48(1):52-7 [PMID: 21406738]
  38. Nat Rev Microbiol. 2020 Oct;18(10):546-558 [PMID: 32483324]
  39. Med Vet Entomol. 2019 Mar;33(1):56-67 [PMID: 30168151]
  40. FEMS Microbiol Lett. 2011 Dec;325(2):162-9 [PMID: 22029887]
  41. FEMS Microbiol Ecol. 2018 Jun 1;94(6): [PMID: 29617987]
  42. PLoS One. 2011;6(9):e24767 [PMID: 21957459]
  43. PLoS One. 2011;6(12):e28484 [PMID: 22163022]
  44. PLoS One. 2011 Apr 29;6(4):e19473 [PMID: 21559301]
  45. Biomed Res Int. 2020 Dec 14;2020:4065315 [PMID: 33381553]
  46. Parasit Vectors. 2013 Nov 04;6(1):320 [PMID: 24499518]
  47. Malar J. 2020 Sep 29;19(1):348 [PMID: 32993669]
  48. Parasit Vectors. 2019 Mar 27;12(1):146 [PMID: 30917867]
  49. Acta Trop. 2008 Jan;105(1):67-73 [PMID: 18068136]
  50. Insects. 2019 Jun 16;10(6): [PMID: 31208124]
  51. Malar J. 2013 Dec 20;12:456 [PMID: 24359206]
  52. J Vector Borne Dis. 2007 Mar;44(1):44-51 [PMID: 17378216]
  53. Vaccine. 2009 Jan 1;27(1):2-9 [PMID: 18973784]
  54. Malar J. 2011 Dec 13;10:353 [PMID: 22166144]
  55. N Engl J Med. 2014 Jul 31;371(5):411-23 [PMID: 25075834]
  56. J Chem Ecol. 2008 Nov;34(11):1430-6 [PMID: 18946706]
  57. J Med Entomol. 2005 Nov;42(6):974-80 [PMID: 16465737]
  58. Insects. 2022 Feb 03;13(2): [PMID: 35206735]
  59. BMC Public Health. 2019 Oct 21;19(1):1318 [PMID: 31638928]
  60. Cochrane Database Syst Rev. 2010 Apr 14;(4):CD006657 [PMID: 20393950]
  61. Syst Appl Microbiol. 2020 Mar;43(2):126065 [PMID: 32057584]
  62. PLoS One. 2012;7(12):e52084 [PMID: 23272215]
  63. J Med Entomol. 2001 Mar;38(2):282-8 [PMID: 11296836]
  64. Microbiome. 2018 Aug 27;6(1):148 [PMID: 30149801]
  65. Am J Trop Med Hyg. 2007 Dec;77(6 Suppl):264-9 [PMID: 18165501]
  66. Infect Dis Poverty. 2018 Jan 18;7(1):2 [PMID: 29343279]
  67. Parasit Vectors. 2015 Mar 07;8:146 [PMID: 25888910]
  68. Bull World Health Organ. 2004 Feb;82(2):84 [PMID: 15042228]
  69. Appl Environ Microbiol. 2008 Apr;74(8):2461-70 [PMID: 18296538]
  70. Parasit Vectors. 2017 Jan 13;10(1):25 [PMID: 28086941]
  71. Genome Biol. 2019 Nov 28;20(1):257 [PMID: 31779668]
  72. PLoS Med. 2010 Aug 03;7(8):e1000303 [PMID: 20689800]
  73. Biometrics. 2006 Jun;62(2):361-71 [PMID: 16918900]
  74. Appl Microbiol Biotechnol. 2018 Dec;102(23):9973-9989 [PMID: 30291367]
  75. PLoS One. 2020 Dec 11;15(12):e0236607 [PMID: 33306671]
  76. PLoS One. 2012;7(3):e32725 [PMID: 22412913]
  77. Parasit Vectors. 2014 Nov 05;7:489 [PMID: 25367091]
  78. Trop Med Int Health. 2005 Dec;10(12):1274-85 [PMID: 16359409]
  79. Sci Rep. 2021 Nov 16;11(1):22302 [PMID: 34785722]
  80. J Vector Ecol. 2006 Dec;31(2):400-5 [PMID: 17249359]

Word Cloud

Created with Highcharts 10.0.0sitesmosquitobacterialbreedinglarvaemalariafactorssamplestotalcommunitiesseasonproliferationcorrelatedmosquitoesordercommunitystructurephysicochemicalhabitatswateralsowithinfoundpositiveconductivitydissolvedsolidssalinityammoniarainypresencepotentialpositivelyrichnessevennessenvironmentalBackground:SincetransmitmaintainparasitebreedoutdoorenvironmenturgentneedmanageelaborateecologicallandscapeinteractionslarvalcharacterisedKwaleCountyKenyaendemicMethods:physicalcharacteristicsparametersdeterminedrecordedWatercollectedidentifiedmetagenomicDNAextractioncharacteriseResultsDiscussion:SitesdescribedwithoutnegativeElectricallowerdrycoincidedhighproportionPseudomonadotacommonphylarecoveredfollowedBacteroidotaActinomycetotaabsencesiterelatedsampledConclusion:GenerallynegativelyelectricalfindingsstudyimplicationspredictingbecomeProfilesassociatedvectorKenyanCoastAnophelesgambiaeovipositionphysico-chemical

Similar Articles

Cited By