Advances in artificial intelligence, robotics, augmented and virtual reality in neurosurgery.

Kimia Kazemzadeh, Meisam Akhlaghdoust, Alireza Zali
Author Information
  1. Kimia Kazemzadeh: Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.
  2. Meisam Akhlaghdoust: Network of Neurosurgery and Artificial Intelligence (NONAI), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
  3. Alireza Zali: Network of Neurosurgery and Artificial Intelligence (NONAI), Universal Scientific Education and Research Network (USERN), Tehran, Iran.

Abstract

Neurosurgical practitioners undergo extensive and prolonged training to acquire diverse technical proficiencies, while neurosurgical procedures necessitate a substantial amount of pre-, post-, and intraoperative clinical data acquisition, making decisions, attention, and convalescence. The past decade witnessed an appreciable escalation in the significance of artificial intelligence (AI) in neurosurgery. AI holds significant potential in neurosurgery as it supplements the abilities of neurosurgeons to offer optimal interventional and non-interventional care to patients by improving prognostic and diagnostic outcomes in clinical therapy and assisting neurosurgeons in making decisions while surgical interventions to enhance patient outcomes. Other technologies including augmented reality, robotics, and virtual reality can assist and promote neurosurgical methods as well. Moreover, they play a significant role in generating, processing, as well as storing experimental and clinical data. Also, the usage of these technologies in neurosurgery is able to curtail the number of costs linked with surgical care and extend high-quality health care to a wider populace. This narrative review aims to integrate the results of articles that elucidate the role of the aforementioned technologies in neurosurgery.

Keywords

References

  1. Nature. 2015 May 28;521(7553):436-44 [PMID: 26017442]
  2. Br J Neurosurg. 2022 Feb;36(1):117-118 [PMID: 32478623]
  3. Stroke. 2018 Jul;49(7):e239-e242 [PMID: 29866758]
  4. Surg Neurol Int. 2022 Aug 19;13:373 [PMID: 36128120]
  5. Neurosurgery. 2013 Oct;73 Suppl 1:57-65 [PMID: 24051884]
  6. J Neurosurg. 2009 Dec;111(6):1141-9 [PMID: 19374495]
  7. Arch Pathol Lab Med. 1997 Jun;121(6):559-67 [PMID: 9199619]
  8. IEEE Trans Biomed Eng. 1988 Feb;35(2):153-60 [PMID: 3280462]
  9. World Neurosurg. 2020 Sep;141:291-298 [PMID: 32561486]
  10. Int J Environ Res Public Health. 2021 Sep 22;18(19): [PMID: 34639256]
  11. Epilepsia. 1998 Sep;39(9):1006-13 [PMID: 9738682]
  12. Surg Innov. 2013 Apr;20(2):190-7 [PMID: 22722339]
  13. J Clin Neurosci. 2017 Jan;35:1-4 [PMID: 28137372]
  14. AIMS Neurosci. 2021 Aug 6;8(4):477-495 [PMID: 34877400]
  15. Arch Surg. 2004 Feb;139(2):170-4 [PMID: 14769575]
  16. World Neurosurg. 2018 Jan;109:476-486.e1 [PMID: 28986230]
  17. Pain Res Manag. 2021 Dec 20;2021:6894001 [PMID: 34966473]
  18. Epilepsia. 2003 Nov;44(11):1425-33 [PMID: 14636351]
  19. Neurosurg Focus. 2017 May;42(5):E3 [PMID: 28463612]
  20. Cureus. 2022 Mar 30;14(3):e23662 [PMID: 35371874]
  21. Neurosurg Focus. 2021 Aug;51(2):E15 [PMID: 34333472]
  22. Comput Math Methods Med. 2015;2015:862942 [PMID: 26339283]
  23. J Pak Med Assoc. 2018 Feb;68(2):258-263 [PMID: 29479103]
  24. Palliat Support Care. 2019 Feb;17(1):29-34 [PMID: 30198451]
  25. BMJ. 2020 Feb 28;368:m395 [PMID: 32111642]
  26. BMC Med Inform Decis Mak. 2012 Jul 10;12:67 [PMID: 22781312]
  27. IEEE Pulse. 2019 May-Jun;10(3):9-11 [PMID: 31135344]
  28. J Neurosurg. 2010 Sep;113(3):585-90 [PMID: 20020844]
  29. Gastrointest Endosc. 2020 Oct;92(4):807-812 [PMID: 32565184]
  30. J Clin Med. 2021 Feb 16;10(4): [PMID: 33669166]
  31. J Neurosurg Spine. 2013 Oct;19(4):492-501 [PMID: 23952323]
  32. Neurosurg Rev. 2018 Apr;41(2):497-501 [PMID: 28735437]
  33. Brain Topogr. 2016 Jul;29(4):561-71 [PMID: 27067598]
  34. Spine (Phila Pa 1976). 2017 Oct 1;42(19):E1119-E1125 [PMID: 28187069]
  35. Surg Endosc. 2016 Feb;30(2):559-566 [PMID: 26091986]
  36. Curr Med Sci. 2019 Feb;39(1):1-6 [PMID: 30868484]
  37. JAMA. 2005 Dec 28;294(24):3135-7 [PMID: 16380595]
  38. World Neurosurg. 2022 Feb;158:e577-e582 [PMID: 34775085]
  39. J Robot Surg. 2020 Jun;14(3):409-413 [PMID: 31321615]
  40. Neurosurg Rev. 2014 Jul;37(3):357-66; discussion 366 [PMID: 24729137]
  41. Int J Comput Assist Radiol Surg. 2017 Mar;12(3):363-378 [PMID: 27581336]
  42. Spine (Phila Pa 1976). 2020 Jan 15;45(2):E111-E119 [PMID: 31404053]
  43. AJNR Am J Neuroradiol. 2008 Jun;29(6):1153-8 [PMID: 18388216]
  44. Neurosurg Clin N Am. 2020 Jan;31(1):103-110 [PMID: 31739920]
  45. Neurosurg Rev. 2020 Oct;43(5):1235-1253 [PMID: 31422572]
  46. Arch Med Sci. 2018 Apr;14(3):572-578 [PMID: 29765445]
  47. J Clin Med. 2021 Dec 31;11(1): [PMID: 35011964]
  48. Vasc Health Risk Manag. 2015 Mar 10;11:195-202 [PMID: 25792841]
  49. J Natl Cancer Inst. 2017 Jul 1;109(7): [PMID: 28423406]
  50. Spine (Phila Pa 1976). 2018 Jun 15;43(12):853-860 [PMID: 29016439]
  51. Asian Spine J. 2020 Feb;14(1):51-58 [PMID: 31575113]
  52. Neurosurgery. 2014 Dec;10 Suppl 4:576-81; discussion 581 [PMID: 25050577]
  53. J Neural Eng. 2009 Oct;6(5):056001 [PMID: 19667458]
  54. World Neurosurg. 2012 Nov;78(5):404-8 [PMID: 22846655]
  55. Surg Neurol Int. 2014 Oct 13;5(Suppl 10):S435-40 [PMID: 25371849]
  56. Ann Transl Med. 2020 Jul;8(13):824 [PMID: 32793669]
  57. Surg Neurol Int. 2015 Feb 13;6(Suppl 1):S1-8 [PMID: 25722932]
  58. Stereotact Funct Neurosurg. 2014;92(1):17-24 [PMID: 24216673]
  59. Ann R Coll Surg Engl. 2018 May;100(6_sup):5-7 [PMID: 29717892]
  60. Spine Deform. 2018 Mar - Apr;6(2):130-136 [PMID: 29413734]
  61. Neurosurg Clin N Am. 2020 Jan;31(1):121-129 [PMID: 31739922]
  62. World Neurosurg. 2020 Jun;138:e627-e633 [PMID: 32179185]
  63. J Neurol Surg A Cent Eur Neurosurg. 2013 Mar;74(2):71-6 [PMID: 23404553]
  64. Behav Res Ther. 2002 Sep;40(9):983-93 [PMID: 12296495]
  65. J Pediatr Orthop. 2021 Nov-Dec 01;41(10):591-596 [PMID: 34516471]
  66. Front Surg. 2021 Feb 19;8:629963 [PMID: 33681283]
  67. Acta Neurochir (Wien). 2021 Apr;163(4):879-884 [PMID: 33515122]
  68. J Family Med Prim Care. 2019 Jul;8(7):2328-2331 [PMID: 31463251]
  69. Spine J. 2021 Oct;21(10):1626-1634 [PMID: 33971322]
  70. Metabolism. 2017 Apr;69S:S36-S40 [PMID: 28126242]
  71. Gastroenterology. 2020 Jan;158(1):76-94.e2 [PMID: 31593701]
  72. Eur Radiol. 2017 Aug;27(8):3509-3522 [PMID: 28004160]
  73. Neurosurg Focus. 2017 May;42(5):E1 [PMID: 28463607]
  74. Clin Cancer Res. 2018 Mar 1;24(5):1073-1081 [PMID: 29167275]
  75. Nat Med. 2020 Jan;26(1):52-58 [PMID: 31907460]
  76. Surg Endosc. 2018 Apr;32(4):1636-1655 [PMID: 29442240]
  77. Neurospine. 2018 Dec;15(4):329-337 [PMID: 30554505]
  78. Ann R Coll Surg Engl. 2004 Sep;86(5):334-8 [PMID: 15333167]
  79. J Magn Reson Imaging. 2015 Jun;41(6):1689-94 [PMID: 25044773]
  80. J Magn Reson Imaging. 2009 Jul;30(1):1-10 [PMID: 19557840]
  81. Adv Med Educ Pract. 2017 Jul 14;8:465-473 [PMID: 28765716]
  82. J Spine Surg. 2021 Sep;7(3):326-334 [PMID: 34734137]
  83. J Trauma. 2001 Feb;50(2):308-12 [PMID: 11242297]
  84. J Clin Neurosci. 2019 Apr;62:14-20 [PMID: 30642663]
  85. Neurosurgery. 2013 Jan;72 Suppl 1:107-14 [PMID: 23254798]
  86. IEEE Trans Med Imaging. 2000 Nov;19(11):1082-93 [PMID: 11204846]
  87. Ann R Coll Surg Engl. 2018 May;100(6_sup):27-35 [PMID: 29717886]
  88. Am J Gastroenterol. 2019 Mar;114(3):422-428 [PMID: 30315284]
  89. Neurosurgery. 1991 Jul;29(1):27-33 [PMID: 1870684]
  90. Sovrem Tekhnologii Med. 2021;12(6):111-118 [PMID: 34796024]
  91. Radiology. 2015 Apr;275(1):228-34 [PMID: 25486589]
  92. World J Surg. 2016 Feb;40(2):251-7 [PMID: 26482367]
  93. Comput Aided Surg. 2005 Jan;10(1):23-35 [PMID: 16199379]
  94. Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:4411-4414 [PMID: 28269256]
  95. Medicine (Baltimore). 2018 Jun;97(22):e10970 [PMID: 29851848]
  96. JMIR Serious Games. 2021 Jul 8;9(3):e29080 [PMID: 34255668]

Word Cloud

Created with Highcharts 10.0.0neurosurgeryrealityclinicalartificialintelligencecaretechnologiesaugmentedroboticsvirtualneurosurgicaldatamakingdecisionsAIsignificantneurosurgeonsoutcomessurgicalwellroleNeurosurgicalpractitionersundergoextensiveprolongedtrainingacquirediversetechnicalproficienciesproceduresnecessitatesubstantialamountpre-post-intraoperativeacquisitionattentionconvalescencepastdecadewitnessedappreciableescalationsignificanceholdspotentialsupplementsabilitiesofferoptimalinterventionalnon-interventionalpatientsimprovingprognosticdiagnostictherapyassistinginterventionsenhancepatientincludingcanassistpromotemethodsMoreoverplaygeneratingprocessingstoringexperimentalAlsousageablecurtailnumbercostslinkedextendhigh-qualityhealthwiderpopulacenarrativereviewaimsintegrateresultsarticleselucidateaforementionedAdvances

Similar Articles

Cited By