New approaches to recovery after stroke.

Daniel S Marín-Medina, Paula A Arenas-Vargas, Juan C Arias-Botero, Manuela Gómez-Vásquez, Manuel F Jaramillo-López, Jorge M Gaspar-Toro
Author Information
  1. Daniel S Marín-Medina: Grupo de Investigación NeuroUnal, Neurology Unit, Universidad Nacional de Colombia, Bogotá, Colombia. dmarinme@unal.edu.co. ORCID
  2. Paula A Arenas-Vargas: Grupo de Investigación NeuroUnal, Neurology Unit, Universidad Nacional de Colombia, Bogotá, Colombia.
  3. Juan C Arias-Botero: Grupo de Investigación NeuroUnal, Neurology Unit, Universidad Nacional de Colombia, Bogotá, Colombia.
  4. Manuela Gómez-Vásquez: Grupo de Investigación NeuroUnal, Neurology Unit, Universidad Nacional de Colombia, Bogotá, Colombia.
  5. Manuel F Jaramillo-López: Grupo de Investigación NeuroUnal, Neurology Unit, Universidad Nacional de Colombia, Bogotá, Colombia.
  6. Jorge M Gaspar-Toro: Grupo de Investigación NeuroUnal, Neurology Unit, Universidad Nacional de Colombia, Bogotá, Colombia.

Abstract

After a stroke, several mechanisms of neural plasticity can be activated, which may lead to significant recovery. Rehabilitation therapies aim to restore surviving tissue over time and reorganize neural connections. With more patients surviving stroke with varying degrees of neurological impairment, new technologies have emerged as a promising option for better functional outcomes. This review explores restorative therapies based on brain-computer interfaces, robot-assisted and virtual reality, brain stimulation, and cell therapies. Brain-computer interfaces allow for the translation of brain signals into motor patterns. Robot-assisted and virtual reality therapies provide interactive interfaces that simulate real-life situations and physical support to compensate for lost motor function. Brain stimulation can modify the electrical activity of neurons in the affected cortex. Cell therapy may promote regeneration in damaged brain tissue. Taken together, these new approaches could substantially benefit specific deficits such as arm-motor control and cognitive impairment after stroke, and even the chronic phase of recovery, where traditional rehabilitation methods may be limited, and the window for repair is narrow.

Keywords

References

  1. Front Cell Neurosci. 2021 Feb 09;15:628940 [PMID: 33633544]
  2. Expert Opin Biol Ther. 2013 Nov;13(11):1479-83 [PMID: 23915288]
  3. Top Stroke Rehabil. 2017 Jan;24(1):68-79 [PMID: 27309680]
  4. Neural Plast. 2021 Jan 20;2021:8873221 [PMID: 33542729]
  5. Neurophysiol Clin. 2019 Apr;49(2):125-136 [PMID: 30414824]
  6. Eur J Neurosci. 2018 Jun;47(12):1414-1428 [PMID: 29786167]
  7. Stroke. 2016 Jun;47(6):e98-e169 [PMID: 27145936]
  8. Neuroimage. 2020 Mar;208:116424 [PMID: 31794855]
  9. Ann Clin Transl Neurol. 2018 Mar 25;5(5):651-663 [PMID: 29761128]
  10. NeuroRehabilitation. 2020;47(4):463-470 [PMID: 33164953]
  11. Neural Plast. 2019 Feb 27;2019:9708905 [PMID: 30936915]
  12. Stroke. 2011 Aug;42(8):2369-75 [PMID: 21757669]
  13. Front Neurol. 2020 Oct 20;11:581186 [PMID: 33193036]
  14. Circulation. 2019 Jan 8;139(2):192-205 [PMID: 30586746]
  15. Front Neurol. 2022 Mar 22;13:813597 [PMID: 35392634]
  16. Stroke. 2021 Jan;52(1):348-350 [PMID: 33349022]
  17. Front Hum Neurosci. 2023 Jan 04;16:1110274 [PMID: 36684836]
  18. Transl Stroke Res. 2020 Oct;11(5):910-923 [PMID: 32462427]
  19. J Med Internet Res. 2021 Nov 17;23(11):e31007 [PMID: 34787571]
  20. J Physiol. 2017 Feb 15;595(4):1273-1288 [PMID: 27723104]
  21. J Clin Med. 2021 Aug 24;10(17): [PMID: 34501229]
  22. J Clin Med. 2022 Apr 12;11(8): [PMID: 35456245]
  23. Prog Brain Res. 2016;228:163-83 [PMID: 27590969]
  24. Clin Neurophysiol. 2020 Feb;131(2):474-528 [PMID: 31901449]
  25. Tohoku J Exp Med. 2012;228(1):69-74 [PMID: 22976384]
  26. Neurotherapeutics. 2020 Oct;17(4):1919-1930 [PMID: 32671578]
  27. Clin Neurophysiol. 2016 Feb;127(2):1031-1048 [PMID: 26652115]
  28. Clin Rehabil. 2016 May;30(5):432-40 [PMID: 26141808]
  29. J Neuroeng Rehabil. 2021 Jan 7;18(1):5 [PMID: 33413441]
  30. J Neurol Neurosurg Psychiatry. 2020 Apr;91(4):396-401 [PMID: 32041820]
  31. Continuum (Minneap Minn). 2020 Apr;26(2):415-434 [PMID: 32224759]
  32. J Neuroeng Rehabil. 2022 Aug 3;19(1):84 [PMID: 35922846]
  33. Neurorehabil Neural Repair. 2017 Feb;31(2):107-121 [PMID: 27597165]
  34. Arq Neuropsiquiatr. 2019 May 13;77(4):268-278 [PMID: 31090808]
  35. Arch Phys Med Rehabil. 2022 Mar;103(3):523-541 [PMID: 34352269]
  36. Stroke. 2012 Sep;43(9):2468-75 [PMID: 22738919]
  37. Mol Neurobiol. 2020 Oct;57(10):4218-4231 [PMID: 32691303]
  38. Clin Neurophysiol. 2016 Nov;127(11):3425-3454 [PMID: 27693941]
  39. Clin Rehabil. 2021 May;35(5):718-727 [PMID: 33222502]
  40. Neurochem Int. 2011 Sep;59(3):347-56 [PMID: 21718735]
  41. Theranostics. 2020 Oct 26;10(26):12090-12110 [PMID: 33204331]
  42. Clin Neurophysiol. 2019 Jul;130(7):1098-1124 [PMID: 31082786]
  43. Med Sci Monit. 2022 Dec 02;28:e938298 [PMID: 36457205]
  44. Neural Plast. 2023 Feb 28;2023:5044065 [PMID: 36895285]
  45. Int J Stroke. 2017 Jul;12(5):444-450 [PMID: 28697708]
  46. Acta Neurol Belg. 2017 Mar;117(1):189-194 [PMID: 27502413]
  47. J Clin Neurosci. 2023 Jan;107:68-76 [PMID: 36516671]
  48. Clin Neurophysiol. 2021 Jan;132(1):269-306 [PMID: 33243615]
  49. Innov Clin Neurosci. 2019 May 1;16(5-6):30-37 [PMID: 31440399]
  50. Front Hum Neurosci. 2021 Jun 07;15:656975 [PMID: 34163342]
  51. Stroke. 2019 Oct;50(10):2835-2841 [PMID: 31495331]
  52. IEEE Int Conf Rehabil Robot. 2017 Jul;2017:511-515 [PMID: 28813871]
  53. Neuroimage. 2016 Oct 15;140:174-87 [PMID: 26883068]
  54. Cochrane Database Syst Rev. 2019 May 21;5:CD009760 [PMID: 31111960]
  55. J Nippon Med Sch. 2015;82(1):4-13 [PMID: 25797869]
  56. J Neuroeng Rehabil. 2022 Sep 28;19(1):104 [PMID: 36171602]
  57. Stroke. 2022 Jan;53(1):260-263 [PMID: 34865509]
  58. Neurorehabil Neural Repair. 2019 Feb;33(2):112-129 [PMID: 30700224]
  59. Adv Exp Med Biol. 2021;1331:77-94 [PMID: 34453294]
  60. Keio J Med. 2022 Dec 25;71(4):82-92 [PMID: 35718470]
  61. Biomed Res Int. 2017;2017:1695290 [PMID: 28913349]
  62. Acta Neurol Scand. 2017 Dec;136(6):585-605 [PMID: 28464421]
  63. Clin Neurophysiol. 2014 Apr;125(4):755-762 [PMID: 24120314]
  64. Neuroscientist. 2014 Dec;20(6):639-51 [PMID: 25193343]
  65. Brain Stimul. 2018 Mar - Apr;11(2):278-288 [PMID: 29169814]
  66. J Neurosci Methods. 2019 Feb 1;313:37-43 [PMID: 30571989]
  67. Ann Neurol. 2008 Jul;64(1):A11-2 [PMID: 18668532]
  68. Acta Neurol Scand. 2013 Jan;127(1):26-30 [PMID: 22494271]
  69. Mol Brain. 2020 Apr 6;13(1):55 [PMID: 32252813]
  70. Brain Stimul. 2018 Nov - Dec;11(6):1410-1414 [PMID: 30245161]
  71. J Neurol. 2017 Mar;264(3):603-615 [PMID: 27778158]
  72. NeuroRehabilitation. 2020;47(2):109-120 [PMID: 32741792]
  73. Lancet Neurol. 2021 Oct;20(10):795-820 [PMID: 34487721]
  74. Front Neurol. 2019 Apr 24;10:405 [PMID: 31068894]
  75. Clin Neurophysiol. 2020 May;131(5):1019-1020 [PMID: 32193163]
  76. Expert Rev Med Devices. 2016 May;13(5):445-54 [PMID: 27112213]

MeSH Term

Humans
Stroke Rehabilitation
Stroke
Brain
Neuronal Plasticity
Cerebral Cortex
Recovery of Function

Word Cloud

Created with Highcharts 10.0.0stroketherapiesmayrecoveryinterfacesbrainneuralplasticitycanRehabilitationsurvivingtissueimpairmentnewvirtualrealitystimulationmotorapproachesrehabilitationStrokeseveralmechanismsactivatedleadsignificantaimrestoretimereorganizeconnectionspatientsvaryingdegreesneurologicaltechnologiesemergedpromisingoptionbetterfunctionaloutcomesreviewexploresrestorativebasedbrain-computerrobot-assistedcellBrain-computerallowtranslationsignalspatternsRobot-assistedprovideinteractivesimulatereal-lifesituationsphysicalsupportcompensatelostfunctionBrainmodifyelectricalactivityneuronsaffectedcortexCelltherapypromoteregenerationdamagedTakentogethersubstantiallybenefitspecificdeficitsarm-motorcontrolcognitiveevenchronicphasetraditionalmethodslimitedwindowrepairnarrowNewBiomedicaltechnologyNeuronal

Similar Articles

Cited By