Thinking about the action potential: the nerve signal as a window to the physical principles guiding neuronal excitability.

Benjamin Drukarch, Micha M M Wilhelmus
Author Information
  1. Benjamin Drukarch: Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam, Netherlands.
  2. Micha M M Wilhelmus: Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam, Netherlands.

Abstract

Ever since the work of Edgar Adrian, the neuronal action potential has been considered as an electric signal, modeled and interpreted using concepts and theories lent from electronic engineering. Accordingly, the electric action potential, as the prime manifestation of neuronal excitability, serving processing and reliable "long distance" communication of the information contained in the signal, was defined as a non-linear, self-propagating, regenerative, wave of electrical activity that travels along the surface of nerve cells. Thus, in the ground-breaking theory and mathematical model of Hodgkin and Huxley (HH), linking Nernst's treatment of the electrochemistry of semi-permeable membranes to the physical laws of electricity and Kelvin's cable theory, the electrical characteristics of the action potential are presented as the result of the depolarization-induced, voltage- and time-dependent opening and closure of ion channels in the membrane allowing the passive flow of charge, particularly in the form of Na and K -ions, into and out of the neuronal cytoplasm along the respective electrochemical ion gradient. In the model, which treats the membrane as a capacitor and ion channels as resistors, these changes in ionic conductance across the membrane cause a sudden and transient alteration of the transmembrane potential, i.e., the action potential, which is then carried forward and spreads over long(er) distances by means of both active and passive conduction dependent on local current flow by diffusion of Na ion in the neuronal cytoplasm. However, although highly successful in predicting and explaining many of the electric characteristics of the action potential, the HH model, nevertheless cannot accommodate the various non-electrical physical manifestations (mechanical, thermal and optical changes) that accompany action potential propagation, and for which there is ample experimental evidence. As such, the electrical conception of neuronal excitability appears to be incomplete and alternatives, aiming to improve, extend or even replace it, have been sought for. Commonly misunderstood as to their basic premises and the physical principles they are built on, and mistakenly perceived as a threat to the generally acknowledged explanatory power of the "classical" HH framework, these attempts to present a more complete picture of neuronal physiology, have met with fierce opposition from mainstream neuroscience and, as a consequence, currently remain underdeveloped and insufficiently tested. Here we present our perspective that this may be an unfortunate state of affairs as these different biophysics-informed approaches to incorporate also non-electrical signs of the action potential into the modeling and explanation of the nerve signal, in our view, are well suited to foster a new, more complete and better integrated understanding of the (multi)physical nature of neuronal excitability and signal transport and, hence, of neuronal function. In doing so, we will emphasize attempts to derive the different physical manifestations of the action potential from one common, macroscopic thermodynamics-based, framework treating the multiphysics of the nerve signal as the inevitable result of the collective material, i.e., physico-chemical, properties of the lipid bilayer neuronal membrane (in particular, the axolemma) and/or the so-called ectoplasm or membrane skeleton consisting of cytoskeletal protein polymers, in particular, actin fibrils. Potential consequences for our view of action potential physiology and role in neuronal function are identified and discussed.

Keywords

References

  1. Nat Rev Neurosci. 2013 Jan;14(1):63-9 [PMID: 23187813]
  2. J Theor Biol. 1982 Nov 7;99(1):87-99 [PMID: 7169798]
  3. Science. 2013 Jan 25;339(6118):452-6 [PMID: 23239625]
  4. Phys Med Biol. 2007 Apr 7;52(7):R57-90 [PMID: 17374909]
  5. J Neurosci. 2012 Oct 10;32(41):14064-73 [PMID: 23055474]
  6. Acta Biomater. 2019 Oct 1;97:116-140 [PMID: 31357005]
  7. Brain Res Bull. 1998 Jul 15;46(5):381-407 [PMID: 9739001]
  8. Prog Neurobiol. 2009 Jun;88(2):104-13 [PMID: 19482227]
  9. Sci Adv. 2020 May 06;6(19):eaay4313 [PMID: 32494697]
  10. Nature. 1976 Apr 29;260(5554):799-802 [PMID: 1083489]
  11. Arch Ital Biol. 2007 Jan;145(1):39-54 [PMID: 17274183]
  12. PLoS Comput Biol. 2008 May 30;4(5):e1000078 [PMID: 18516226]
  13. Front Cell Neurosci. 2019 May 15;13:208 [PMID: 31156394]
  14. Sci Signal. 2010 Oct 05;3(142):ra73 [PMID: 20923934]
  15. Proc Natl Acad Sci U S A. 2014 Jun 3;111(22):7898-905 [PMID: 24850861]
  16. Proc Natl Acad Sci U S A. 2005 Jul 12;102(28):9790-5 [PMID: 15994235]
  17. Commun Integr Biol. 2022 May 10;15(1):115-120 [PMID: 35574158]
  18. Pflugers Arch. 2006 Dec;453(3):233-47 [PMID: 17072639]
  19. Front Mol Neurosci. 2015 Aug 14;8:44 [PMID: 26321907]
  20. Nat Rev Neurosci. 2004 Apr;5(4):304-16 [PMID: 15034555]
  21. Rev Neurosci. 2021 Dec 17;33(3):285-302 [PMID: 34913622]
  22. Annu Rev Biophys Bioeng. 1976;5:205-38 [PMID: 182064]
  23. Sci Rep. 2019 Feb 21;9(1):2467 [PMID: 30792493]
  24. Neuroscience. 2009 Jan 12;158(1):211-22 [PMID: 18472347]
  25. J Am Chem Soc. 2009 Feb 11;131(5):1972-8 [PMID: 19146400]
  26. Biochim Biophys Acta Gen Subj. 2017 Dec;1861(12):3282-3286 [PMID: 28965878]
  27. Sci Context. 2015 Mar;28(1):31-52 [PMID: 25832569]
  28. Science. 1886 Aug 27;8(186S):196-8 [PMID: 17751106]
  29. Biosystems. 2018 Nov;173:191-206 [PMID: 30142359]
  30. Jpn J Physiol. 1999 Apr;49(2):125-38 [PMID: 10393347]
  31. J Theor Biol. 1984 Apr 21;107(4):649-66 [PMID: 6330461]
  32. Biochim Biophys Acta Biomembr. 2023 Mar;1865(3):184104 [PMID: 36642342]
  33. Phys Rev E. 2019 Mar;99(3-1):032406 [PMID: 30999419]
  34. Biosystems. 2015 Jan;127:14-27 [PMID: 25448891]
  35. Proc Biol Sci. 2021 Oct 27;288(1961):20211111 [PMID: 34666526]
  36. Proc Natl Acad Sci U S A. 2017 Feb 7;114(6):1401-1406 [PMID: 28115721]
  37. Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Sep;92(3):032707 [PMID: 26465498]
  38. J Cell Sci. 2012 Jul 1;125(Pt 13):3051-60 [PMID: 22797913]
  39. Front Mol Neurosci. 2022 Jun 16;15:869935 [PMID: 35782391]
  40. Proc Natl Acad Sci U S A. 2022 Feb 22;119(8): [PMID: 35165183]
  41. J Physiol. 1985 Dec;369:229-48 [PMID: 4093881]
  42. Eur Phys J E Soft Matter. 2020 Feb 5;43(2):8 [PMID: 32016590]
  43. Proc Natl Acad Sci U S A. 1974 Jan;71(1):214-9 [PMID: 4521052]
  44. Physiol Rev. 1956 Jul;36(3):376-99 [PMID: 13359129]
  45. Semin Cell Dev Biol. 2011 Apr;22(2):214-9 [PMID: 21320624]
  46. PLoS Comput Biol. 2015 Apr 09;11(4):e1004114 [PMID: 25856629]
  47. Nat Rev Neurosci. 2007 Jun;8(6):451-65 [PMID: 17514198]
  48. Proc Natl Acad Sci U S A. 1967 Feb;57(2):335-41 [PMID: 16591474]
  49. Front Mol Neurosci. 2018 Sep 04;11:319 [PMID: 30233318]
  50. Prog Biophys Mol Biol. 2021 Jul;162:69-78 [PMID: 33227328]
  51. Phys Biol. 2014 Aug 26;11(5):051001 [PMID: 25156965]
  52. Front Syst Neurosci. 2015 Nov 10;9:151 [PMID: 26617496]
  53. J Bioenerg. 1972 May;3(1):65-79 [PMID: 4563988]
  54. Sci Rep. 2020 Apr 1;10(1):5749 [PMID: 32238845]
  55. HFSP J. 2009;3(2):94-104 [PMID: 19794818]
  56. J Cell Biol. 1978 Aug;78(2):597-621 [PMID: 690181]
  57. Science. 1964 Sep 11;145(3637):1148-54 [PMID: 14173403]
  58. J R Soc Interface. 2018 Jun;15(143): [PMID: 29925577]
  59. Front Mol Neurosci. 2022 Mar 07;15:830892 [PMID: 35321030]
  60. Front Mol Neurosci. 2021 Oct 27;14:757264 [PMID: 34776865]
  61. Nat Commun. 2015 Mar 30;6:6697 [PMID: 25819404]
  62. Biomech Model Mechanobiol. 2018 Dec;17(6):1771-1783 [PMID: 30032474]
  63. Chem Rev. 2012 Dec 12;112(12):6218-26 [PMID: 23194182]
  64. Prog Neurobiol. 2018 Oct;169:172-185 [PMID: 29981394]
  65. Biophys Chem. 2016 Sep;216:51-59 [PMID: 27448851]
  66. J Physiol. 1952 Aug;117(4):500-44 [PMID: 12991237]
  67. Behav Brain Sci. 2018 Jul 16;42:e215 [PMID: 30714889]
  68. J Neurophysiol. 2016 Nov 1;116(5):2180-2209 [PMID: 27535372]
  69. Curr Opin Cell Biol. 2020 Oct;66:11-18 [PMID: 32416466]
  70. Proc Natl Acad Sci U S A. 2018 Mar 13;115(11):2658-2663 [PMID: 29483271]
  71. Sci Am. 2018 Mar 20;318(4):60-67 [PMID: 29557966]

Word Cloud

Created with Highcharts 10.0.0neuronalactionpotentialsignalphysicalnervemembraneexcitabilityionelectricelectricalmodelHHcommunicationalongtheorycharacteristicsresultchannelspassiveflowNacytoplasmchangesienon-electricalmanifestationsprinciplesframeworkattemptspresentcompletephysiologydifferentviewfunctionparticularEversinceworkEdgarAdrianconsideredmodeledinterpretedusingconceptstheorieslentelectronicengineeringAccordinglyprimemanifestationservingprocessingreliable"longdistance"informationcontaineddefinednon-linearself-propagatingregenerativewaveactivitytravelssurfacecellsThusground-breakingmathematicalHodgkinHuxleylinkingNernst'streatmentelectrochemistrysemi-permeablemembraneslawselectricityKelvin'scablepresenteddepolarization-inducedvoltage-time-dependentopeningclosureallowingchargeparticularlyformK-ionsrespectiveelectrochemicalgradienttreatscapacitorresistorsionicconductanceacrosscausesuddentransientalterationtransmembranecarriedforwardspreadslongerdistancesmeansactiveconductiondependentlocalcurrentdiffusionHoweveralthoughhighlysuccessfulpredictingexplainingmanyneverthelessaccommodatevariousmechanicalthermalopticalaccompanypropagationampleexperimentalevidenceconceptionappearsincompletealternativesaimingimproveextendevenreplacesoughtCommonlymisunderstoodbasicpremisesbuiltmistakenlyperceivedthreatgenerallyacknowledgedexplanatorypower"classical"picturemetfierceoppositionmainstreamneuroscienceconsequencecurrentlyremainunderdevelopedinsufficientlytestedperspectivemayunfortunatestateaffairsbiophysics-informedapproachesincorporatealsosignsmodelingexplanationwellsuitedfosternewbetterintegratedunderstandingmultinaturetransporthencewillemphasizederiveonecommonmacroscopicthermodynamics-basedtreatingmultiphysicsinevitablecollectivematerialphysico-chemicalpropertieslipidbilayeraxolemmaand/orso-calledectoplasmskeletonconsistingcytoskeletalproteinpolymersactinfibrilsPotentialconsequencesroleidentifieddiscussedThinkingpotential:windowguidingaxonalmembrane-cytoskeletonimpulseneuronphasetransitiontransmission

Similar Articles

Cited By