Transcriptome analysis of two tobacco varieties with contrast resistance to in response to PVY MN infection.

Shixiao Xu, Pei Tian, Zhimin Jiang, Xiaoxiang Chen, Bo Li, Jutao Sun, Zhiqiang Zhang
Author Information
  1. Shixiao Xu: College of Tobacco Science, Henan Agricultural University, National Tobacco Cultivation & Physiology & Biochemistry Research Centre, Scientific Observation and Experiment Station of Henan, Ministry of Agriculture, Zhengzhou, China.
  2. Pei Tian: China Tobacco Jiangsu Industry Co, Ltd. Xuzhou Cigarette Factory, Xuzhou, China.
  3. Zhimin Jiang: China Tobacco Zhejiang Industry Co, Ltd., Hangzhou, China.
  4. Xiaoxiang Chen: China Tobacco Zhejiang Industry Co, Ltd., Hangzhou, China.
  5. Bo Li: China Tobacco Zhejiang Industry Co, Ltd., Hangzhou, China.
  6. Jutao Sun: College of Tobacco Science, Henan Agricultural University, National Tobacco Cultivation & Physiology & Biochemistry Research Centre, Scientific Observation and Experiment Station of Henan, Ministry of Agriculture, Zhengzhou, China.
  7. Zhiqiang Zhang: College of Tobacco Science, Henan Agricultural University, National Tobacco Cultivation & Physiology & Biochemistry Research Centre, Scientific Observation and Experiment Station of Henan, Ministry of Agriculture, Zhengzhou, China.

Abstract

Root-knot nematode (RKN) disease is a major disease of tobacco worldwide, which seriously hinders the improvement of tobacco yield and quality. Obvious veinal necrosis-hypersensitive responses are observed only in RKN-resistant lines infected by Potyvirus Y (PVY) MN, making this an effective approach to screen for RKN-resistant tobacco. RNA-seq analysis, real-time quantitative PCR (qRT-PCR) and functional enrichment analysis were conducted to gain insight into the transcription dynamics difference between G28 (RKN-resistant) and CBH (RKN-susceptible) varieties infected with PVY MN. Results showed that a total of 7900, 10576, 9921, 11530 and 12531 differentially expressed genes (DEGs) were identified between the two varieties at 0, 1, 3, 5, and 7 d after infection, respectively. DEGs were associated with plant hormone signal transduction, starch and sucrose metabolism, phenylpropanoid biosynthesis, and photosynthesis-related metabolic pathways. Additional DEGs related to starch and sucrose metabolism, energy production, and the indole-3-acetic acid signaling pathway were induced in CBH plants after infection. DEGs related to phenylpropanoid biosynthesis, abscisic acid, salicylic acid, brassinosteroids, and jasmonic acid signaling pathway were induced in G28 after infection. Our findings reveal DEGs that may contribute to differences in PVY MN resistance among tobacco varieties. These results help us to understand the differences in transcriptional dynamics and metabolic processes between RKN-resistant and RKN-susceptible varieties involved in tobacco-PVY MN interaction.

Keywords

References

  1. Bioinformatics. 2015 Jan 15;31(2):166-9 [PMID: 25260700]
  2. Pest Manag Sci. 2015 Dec;71(12):1591-8 [PMID: 26248710]
  3. Curr Opin Plant Biol. 2005 Aug;8(4):409-14 [PMID: 15939661]
  4. Plant Cell. 1999 May;11(5):781-92 [PMID: 10330465]
  5. PLoS Pathog. 2011 May;7(5):e1002035 [PMID: 21589905]
  6. Nat Commun. 2014 May 08;5:3833 [PMID: 24807620]
  7. Mol Plant Microbe Interact. 2014 Feb;27(2):177-89 [PMID: 24224533]
  8. BMC Genomics. 2017 Sep 8;18(1):705 [PMID: 28886694]
  9. Plant Physiol Biochem. 2012 Feb;51:145-52 [PMID: 22153251]
  10. Plants (Basel). 2022 Oct 17;11(20): [PMID: 36297768]
  11. Theor Appl Genet. 2021 Mar;134(3):777-792 [PMID: 33469696]
  12. Plant Cell. 1998 Aug;10(8):1307-19 [PMID: 9707531]
  13. Virol J. 2021 Sep 9;18(1):184 [PMID: 34503522]
  14. Plant J. 2000 Sep;23(5):567-76 [PMID: 10972883]
  15. Planta. 2015 Apr;241(4):875-85 [PMID: 25522794]
  16. Plant Physiol. 2011 Jun;156(2):779-92 [PMID: 21482634]
  17. Adv Virus Res. 2015;92:101-99 [PMID: 25701887]
  18. Nature. 2001 Jun 14;411(6839):848-53 [PMID: 11459068]
  19. Trends Plant Sci. 2011 Jul;16(7):388-94 [PMID: 21470894]
  20. Nat Biotechnol. 2010 May;28(5):511-5 [PMID: 20436464]
  21. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  22. Plant Physiol. 2017 Sep;175(1):498-510 [PMID: 28747428]
  23. J Exp Bot. 2007;58(15-16):4019-26 [PMID: 18182420]
  24. Sci Rep. 2014 Jul 31;4:5905 [PMID: 25082428]
  25. Mol Plant Pathol. 2002 May 1;3(3):145-52 [PMID: 20569320]
  26. Physiol Plant. 2023 Mar;175(2):e13894 [PMID: 36942459]
  27. Mol Plant. 2020 Aug 3;13(8):1194-1202 [PMID: 32585190]
  28. Curr Protein Pept Sci. 2017;18(4):335-351 [PMID: 27323805]
  29. mBio. 2021 Feb 16;12(1): [PMID: 33593968]
  30. Plant Genome. 2022 Mar;15(1):e20161 [PMID: 34806826]
  31. Curr Opin Plant Biol. 2000 Aug;3(4):315-9 [PMID: 10873843]
  32. J Exp Bot. 2014 Mar;65(4):1095-109 [PMID: 24420577]
  33. Hortic Res. 2022 Sep 05;9:uhac197 [PMID: 36338841]
  34. Proc Natl Acad Sci U S A. 1998 Aug 18;95(17):9750-4 [PMID: 9707547]
  35. New Phytol. 2006;170(3):501-12 [PMID: 16626472]
  36. Plant Cell. 1996 Oct;8(10):1735-45 [PMID: 8914324]
  37. Nat Biotechnol. 1998 Dec;16(13):1365-9 [PMID: 9853621]
  38. Genome Biol. 2010;11(10):R106 [PMID: 20979621]
  39. J Virol. 2013 May;87(10):5769-83 [PMID: 23487466]
  40. Mol Plant Pathol. 2003 Jul 1;4(4):217-24 [PMID: 20569382]
  41. Nat Chem Biol. 2009 May;5(5):301-7 [PMID: 19377456]
  42. Proc Natl Acad Sci U S A. 2016 May 10;113(19):E2740-9 [PMID: 27118842]
  43. Elife. 2017 Oct 10;6: [PMID: 28994391]
  44. Mycorrhiza. 2020 Sep;30(5):555-566 [PMID: 32647969]
  45. Proc Natl Acad Sci U S A. 2013 May 21;110(21):E1963-71 [PMID: 23650359]
  46. Plant J. 2018 Feb;93(4):675-685 [PMID: 29160592]
  47. Pathogens. 2021 Apr 13;10(4): [PMID: 33924485]
  48. Methods. 2001 Dec;25(4):402-8 [PMID: 11846609]
  49. Nat Methods. 2015 Apr;12(4):357-60 [PMID: 25751142]
  50. Nucleic Acids Res. 2008 Jan;36(Database issue):D480-4 [PMID: 18077471]
  51. Proc Natl Acad Sci U S A. 2000 Dec 19;97(26):14789-94 [PMID: 11121079]
  52. Int J Mol Sci. 2021 Dec 17;22(24): [PMID: 34948367]
  53. Molecules. 2018 Aug 20;23(8): [PMID: 30127271]
  54. Mol Plant Microbe Interact. 2003 Jul;16(7):645-9 [PMID: 12848430]

Word Cloud

Created with Highcharts 10.0.0tobaccoPVYMNvarietiesDEGsRKN-resistantinfectionacidanalysisresistancenematodediseaseinfecteddynamicsG28CBHRKN-susceptibletwostarchsucrosemetabolismphenylpropanoidbiosynthesismetabolicrelatedsignalingpathwayinduceddifferencesRoot-knotRKNmajorworldwideseriouslyhindersimprovementyieldqualityObviousveinalnecrosis-hypersensitiveresponsesobservedlinesPotyvirusYmakingeffectiveapproachscreenRNA-seqreal-timequantitativePCRqRT-PCRfunctionalenrichmentconductedgaininsighttranscriptiondifferenceResultsshowedtotal79001057699211153012531differentiallyexpressedgenesidentified01357drespectivelyassociatedplanthormonesignaltransductionphotosynthesis-relatedpathwaysAdditionalenergyproductionindole-3-aceticplantsabscisicsalicylicbrassinosteroidsjasmonicfindingsrevealmaycontributeamongresultshelpusunderstandtranscriptionalprocessesinvolvedtobacco-PVYinteractionTranscriptomecontrastresponseMSNRroot-knottranscriptome

Similar Articles

Cited By (2)