The diapausing mosquito Culex pipiens exhibits reduced levels of H3K27me2 in the fat body.

Xueyan Wei, Prabin Dhungana, Cheolho Sim
Author Information
  1. Xueyan Wei: Department of Biology, Baylor University, Waco, Texas, USA. ORCID
  2. Prabin Dhungana: Department of Biology, Baylor University, Waco, Texas, USA.
  3. Cheolho Sim: Department of Biology, Baylor University, Waco, Texas, USA.

Abstract

Culex pipiens, the northern house mosquito, is a major vector of West Nile virus. To survive the severe winter, adult mosquitoes enter a diapause programme. Extended lifespan and an increase in lipid storage are key indicators of diapause. Post-translational modifications to histone proteins impact the expression of genes and have been linked to the lifespan and energy utilisation of numerous insects. Here, we investigated the potential contribution of epigenetic alterations in initiating diapause in this mosquito species. Multiple sequence alignment of H3 sequences from other insect species demonstrates a high conservation of the H3 histone in Cx. pipiens throughout evolution. We then compared the levels of histone methylation in the ovaries and fat body tissues of diapausing and non-diapausing Cx. pipiens using western blots. Our data indicate that histone methylation levels in the ovaries of Cx. pipiens do not change during diapause. In contrast, H3K27me2 levels decrease more than twofold in the fat body of diapausing mosquitoes relative to non-diapausing counterparts. H3K27 methylation plays a crucial role in chromosome activation and inactivation during development in many insect species. This is predominantly governed by polycomb repressor complex 2. Intriguingly, a previous ChIP-seq study demonstrated that the transcription factor FOXO (Forkhead box O) targets the genes that comprise this complex. In addition, H3K27me2 exhibits dynamic abundance throughout the diapause programme in Cx. pipiens, suggesting its potential role in the initial activation of the diapause programme. This study expands our understanding of the relationship between alterations in epigenetic regulation and diapause.

Keywords

References

  1. Curr Biol. 2004 Jul 27;14(14):R546-51 [PMID: 15268870]
  2. Proc Natl Acad Sci U S A. 2008 May 6;105(18):6777-81 [PMID: 18448677]
  3. BMC Genomics. 2015 Sep 21;16:720 [PMID: 26391666]
  4. Proc Natl Acad Sci U S A. 2004 Nov 9;101(45):15998-6003 [PMID: 15520384]
  5. Front Immunol. 2020 Jan 14;10:3025 [PMID: 31993053]
  6. Proc Natl Acad Sci U S A. 2021 Aug 31;118(35): [PMID: 34429358]
  7. Nucleic Acids Res. 2000 Jul 15;28(14):2741-51 [PMID: 10908331]
  8. Cell. 2002 Oct 18;111(2):197-208 [PMID: 12408864]
  9. Nat Struct Mol Biol. 2007 Nov;14(11):1017-24 [PMID: 17984964]
  10. Cell. 2002 Oct 18;111(2):185-96 [PMID: 12408863]
  11. Mol Biol Evol. 2017 Mar 1;34(3):654-665 [PMID: 28025279]
  12. J Insect Physiol. 2006 Feb;52(2):113-27 [PMID: 16332347]
  13. Aging Cell. 2012 Apr;11(2):315-25 [PMID: 22212395]
  14. Nature. 2001 Mar 8;410(6825):227-30 [PMID: 11242085]
  15. Aging Cell. 2011 Dec;10(6):980-90 [PMID: 21834846]
  16. J Med Entomol. 1989 Jul;26(4):318-26 [PMID: 2769712]
  17. Mol Cell. 2007 Jan 12;25(1):15-30 [PMID: 17218268]
  18. Nat Rev Mol Cell Biol. 2009 Oct;10(10):697-708 [PMID: 19738629]
  19. J Biol Chem. 1969 Oct 25;244(20):5669-79 [PMID: 5388597]
  20. Elife. 2018 May 29;7: [PMID: 29809154]
  21. Development. 2009 Nov;136(21):3531-42 [PMID: 19820181]
  22. PLoS Genet. 2012 Jan;8(1):e1002473 [PMID: 22291607]
  23. J Exp Biol. 2007 Jan;210(Pt 2):217-26 [PMID: 17210959]
  24. Science. 2010 Jan 15;327(5963):343-8 [PMID: 20075255]
  25. Insect Mol Biol. 2009 Jun;18(3):325-32 [PMID: 19523064]
  26. J Biol Chem. 2013 Aug 9;288(32):23554-64 [PMID: 23814061]
  27. Proc Natl Acad Sci U S A. 2007 Nov 20;104(47):18439-44 [PMID: 18003914]
  28. Nat Rev Mol Cell Biol. 2006 Jul;7(7):473-83 [PMID: 16829979]
  29. Nat Rev Mol Cell Biol. 2010 Apr;11(4):264-75 [PMID: 20197778]
  30. Proc Natl Acad Sci U S A. 2015 Mar 24;112(12):3811-6 [PMID: 25775593]
  31. J Med Entomol. 2006 Jul;43(4):713-22 [PMID: 16892629]
  32. J Insect Physiol. 2020 Jan;120:103971 [PMID: 31705845]
  33. Genome Biol. 2011 Dec 20;12(12):R123 [PMID: 22185090]
  34. Genome Res. 2016 Feb;26(2):203-10 [PMID: 26672019]
  35. PLoS Genet. 2023 Sep 13;19(9):e1010906 [PMID: 37703303]
  36. Cell Metab. 2011 Aug 3;14(2):161-72 [PMID: 21803287]
  37. Comp Biochem Physiol A Mol Integr Physiol. 2021 Jul;257:110959 [PMID: 33862219]
  38. Proc Natl Acad Sci U S A. 2010 Jan 5;107(1):169-74 [PMID: 20018689]
  39. Nucleic Acids Res. 1991 Apr 25;19 Suppl:2173-88 [PMID: 2041803]
  40. Genome Res. 2015 Aug;25(8):1170-81 [PMID: 25986499]

Grants

  1. R15 AI139861/NIAID NIH HHS
  2. R15AI139861/NIH HHS
  3. R15AI139861/NIH HHS
  4. IOS-1944214/National Science Foundation

MeSH Term

Animals
Culex
Histones
Fat Body
Female
Diapause, Insect
Insect Proteins
Methylation
Ovary

Chemicals

Histones
Insect Proteins

Word Cloud

Created with Highcharts 10.0.0diapausepipienshistoneCxlevelsmethylationfatbodyH3K27me2CulexmosquitoprogrammespeciesdiapausingmosquitoeslifespangenespotentialepigeneticalterationsH3insectthroughoutovariesnon-diapausingroleactivationcomplexstudyexhibitsnorthernhousemajorvectorWestNilevirussurviveseverewinteradultenterExtendedincreaselipidstoragekeyindicatorsPost-translationalmodificationsproteinsimpactexpressionlinkedenergyutilisationnumerousinsectsinvestigatedcontributioninitiatingMultiplesequencealignmentsequencesdemonstrateshighconservationevolutioncomparedtissuesusingwesternblotsdataindicatechangecontrastdecreasetwofoldrelativecounterpartsH3K27playscrucialchromosomeinactivationdevelopmentmanypredominantlygovernedpolycombrepressor2IntriguinglypreviousChIP-seqdemonstratedtranscriptionfactorFOXOForkheadboxOtargetscompriseadditiondynamicabundancesuggestinginitialexpandsunderstandingrelationshipregulationreducedepigenetics

Similar Articles

Cited By