Phenotypic variation and genomic variation in insect virulence traits reveal patterns of intraspecific diversity in a locust-specific fungal pathogen.

Dinah Parker, Nicolai V Meyling, Henrik H De Fine Licht
Author Information
  1. Dinah Parker: Section for Organismal Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark. ORCID
  2. Nicolai V Meyling: Section for Organismal Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark. ORCID
  3. Henrik H De Fine Licht: Section for Organismal Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark. ORCID

Abstract

Intraspecific pathogen diversity is crucial for understanding the evolution and maintenance of adaptation in host-pathogen interactions. Traits associated with virulence are often a significant source of variation directly impacted by local selection pressures. The specialist fungal entomopathogen, Metarhizium acridum, has been widely implemented as a biological control agent of locust pests in tropical regions of the world. However, few studies have accounted for natural intraspecific phenotypic and genetic variation. Here, we examine the diversity of nine isolates of M. acridum spanning the known geographic distribution, in terms of (1) virulence towards two locust species, (2) growth rates on three diverse nutrient sources, and (3) comparative genomics to uncover genomic variability. Significant variability in patterns of virulence and growth was shown among the isolates, suggesting intraspecific ecological specialization. Different patterns of virulence were shown between the two locust species, indicative of potential host preference. Additionally, a high level of diversity among M. acridum isolates was observed, revealing increased variation in subtilisin-like proteases from the Pr1 family. These results culminate in the first in-depth analysis regarding multiple facets of natural variation in M. acridum, offering opportunities to understand critical evolutionary drivers of intraspecific diversity in pathogens.

Keywords

References

  1. Abyzov, A., Urban, A. E., Snyder, M., & Gerstein, M. (2011). CNVnator: An approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing. Genome Research, 21(6), 974-984.
  2. Akey, J. M., Eberle, M. A., Rieder, M. J., Carlson, C. S., Shriver, M. D., Nickerson, D. A., & Kruglyak, L. (2004). Population history and natural selection shape patterns of genetic variation in 132 genes. PLoS Biology, 2(10), e286.
  3. Andrews, S. (2010). FastQC: A quality control tool for high throughput sequence data. Babraham Bioinformatics, Babraham Institute. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
  4. Aw, K. M. S., & Hue, S. M. (2017). Mode of infection of Metarhizium spp. fungus and their potential as biological control agents. Journal of Fungi, 3(2), 30.
  5. Baltrušis, P., Doyle, S. R., Halvarsson, P., & Höglund, J. (2022). Genome-wide analysis of the response to ivermectin treatment by a Swedish field population of Haemonchus contortus. International Journal for Parasitology: Drugs and Drug Resistance, 18, 12-19.
  6. Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1-48.
  7. Bellis, E. S., Howe, D. K., & Denver, D. R. (2016). Genome-wide polymorphism and signatures of selection in the symbiotic sea anemone Aiptasia. BMC Genomics, 17(1), 160.
  8. Benesh, D. P., & Kalbe, M. (2016). Experimental parasite community ecology: Intraspecific variation in a large tapeworm affects community assembly. Journal of Animal Ecology, 85(4), 1004-1013.
  9. Bischoff, J. F., Rehner, S. A., & Humber, R. A. (2009). A multilocus phylogeny of the Metarhizium anisopliae lineage. Mycologia, 101(4), 512-530.
  10. Boucias, D. G., & Pendland, J. C. (1987). Detection of protease inhibitors in the hemolymph of resistant Anticarsia gemmatalis which are inhibitory to the entomopathogenic fungus, Nomuraea rileyi. Experientia, 43, 336-339.
  11. Brancini, G. T. P., Ferreira, M. E. S., Rangel, D. E. N., & Braga, G. Ú. L. (2019). Combining transcriptomics and proteomics reveals potential post-transcriptional control of gene expression after light exposure in Metarhizium acridum. G3: Genes, Genomes, Genetics, 9(9), 2951-2961.
  12. Carlson, C. S., Thomas, D. J., Eberle, M. A., Swanson, J. E., Livingston, R. J., Rieder, M. J., & Nickerson, D. A. (2005). Genomic regions exhibiting positive selection identified from dense genotype data. Genome Research, 15(11), 1553-1565.
  13. Cox, D. R. (1972). Regression models and life-tables. Journal of the Royal Statistical Society: Series B Methodological, 34(2), 187-202.
  14. Daoust, R. A., & Roberts, D. W. (1982). Virulence of natural and insect-passaged strains of Metarhizium anisopliae to mosquito larvae. Journal of Invertebrate Pathology, 40(1), 107-117.
  15. DePristo, M. A., Banks, E., Poplin, R., Garimella, K. V., Maguire, J. R., Hartl, C., Philippakis, A. A., del Angel, G., Rivas, M. A., Hanna, M., McKenna, A., Fennell, T. J., Kernytsky, A. M., Sivachenko, A. Y., Cibulskis, K., Gabriel, S. B., Altshuler, D., & Daly, M. J. (2011). A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nature Genetics, 43(5), 491-498.
  16. Desprez-Loustau, M.-L., Feau, N., Mougou-Hamdane, A., & Dutech, C. (2011). Interspecific and intraspecific diversity in oak powdery mildews in Europe: Coevolution history and adaptation to their hosts. Mycoscience, 52(3), 165-173.
  17. Deviche, P., Greiner, E. C., & Manteca, X. (2001). Interspecific variability of prevalence in blood parasites of adult passerine birds during the breeding season in Alaska. Journal of Wildlife Diseases, 37(1), 28-35.
  18. Douthwaite, B., Langewald, J., & Harris, J. (2001). Development and commercialization of the green muscle biopesticide. International Institute of Tropical Agriculture.
  19. Driver, F., Milner, R. J., & Trueman, J. W. H. (2000). A taxonomic revision of Metarhizium based on a phylogenetic analysis of rDNA sequence data. Mycological Research, 104(2), 134-150.
  20. Elena, G., Garcia-Figueres, F., Reigada, S., & Luque, J. (2015). Intraspecific variation in Diplodia seriata isolates occurring on grapevines in Spain. Plant Pathology, 64(3), 680-689.
  21. Fahrenkrog, A. M., Neves, L. G., Resende, M. F. R., Dervinis, C., Davenport, R., Barbazuk, W. B., & Kirst, M. (2017). Population genomics of the eastern cottonwood (Populus deltoides). Ecology and Evolution, 7(22), 9426-9440.
  22. Falcon, S., & Gentleman, R. (2007). Using GOstats to test gene lists for GO term association. Bioinformatics, 23(2), 257-258.
  23. Fernandes, Ã. K. K., Keyser, C. A., Chong, J. P., Rangel, D. E. N., Miller, M. P., & Roberts, D. W. (2010). Characterization of Metarhizium species and varieties based on molecular analysis, heat tolerance and cold activity. Journal of Applied Microbiology, 108(1), 115-128.
  24. Fite, T., Tefera, T., Negeri, M., Damte, T., & Sori, W. (2020). Evaluation of Beauveria bassiana, Metarhizium anisopliae, and Bacillus thuringiensis for the management of Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae) under laboratory and field conditions. Biocontrol Science and Technology, 30(3), 278-295.
  25. Freimoser, F. M., Screen, S., Bagga, S., Hu, G., & St Leger, R. J. (2003). Expressed sequence tag (EST) analysis of two subspecies of Metarhizium anisopliae reveals a plethora of secreted proteins with potential activity in insect hosts. Microbiology, 149(1), 239-247.
  26. Gao, B. J., Mou, Y. N., Tong, S. M., Ying, S. H., & Feng, M. G. (2020). Subtilisin-like Pr1 proteases marking the evolution of pathogenicity in a wide-spectrum insect-pathogenic fungus. Virulence, 11(1), 365-380.
  27. Gao, Q., Jin, K., Ying, S. H., Zhang, Y., Xiao, G., Shang, Y., Duan, Z., Hu, X., Xie, X. Q., Zhou, G., Peng, G., Luo, Z., Huang, W., Wang, B., Fang, W., Wang, S., Zhong, Y., Ma, L. J., St Leger, R. J., … Wang, C. (2011). Genome sequencing and comparative transcriptomics of the model entomopathogenic fungi Metarhizium anisopliae and M. acridum. PLoS Genetics, 7(1), e1001264.
  28. Gebremariam, A., Chekol, Y., & Assefa, F. (2021). Phenotypic, molecular, and virulence characterization of entomopathogenic fungi, Beauveria bassiana (Balsam) Vuillemin, and Metarhizium anisopliae (Metschn.) Sorokin from soil samples of Ethiopia for the development of mycoinsecticide. Heliyon, 7(5), e07091.
  29. Goodenough, A. E., & Stallwood, B. (2010). Intraspecific variation and interspecific differences in the bacterial and fungal assemblages of blue tit (Cyanistes caeruleus) and great tit (Parus major) nests. Microbial Ecology, 59(2), 221-232.
  30. Gu, X., Ding, J., Liu, W., Yang, X., Yao, L., Gao, X., Zhang, M., Yang, S., & Wen, J. (2020). Comparative genomics and association analysis identifies virulence genes of Cercospora sojina in soybean. BMC Genomics, 21(1), 1-17.
  31. He, M., Hu, J., & Xia, Y. (2012). Large scale expressed sequence tag (EST) analysis of Metarhizium acridum infecting Locusta migratoria reveals multiple strategies for fungal adaptation to the host cuticle. Current Genetics, 58(5-6), 265-279.
  32. Hu, X., Xiao, G., Zheng, P., Shang, Y., Su, Y., Zhang, X., Liu, X., Zhan, S., St. Leger, R. J., & Wang, C. (2014). Trajectory and genomic determinants of fungal-pathogen speciation and host adaptation. Proceedings of the National Academy of Sciences of the United States of America, 111(47), 16796-16801.
  33. Huson, D. H. (1998). SplitsTree: Analyzing and visualizing evolutionary data. Bioinformatics, 14(1), 68-73.
  34. Jensen, A. B., Thomsen, L., & Eilenberg, J. (2001). Intraspecific variation and host specificity of Entomophthora muscae sensu stricto isolates revealed by random amplified polymorphic DNA, universal primed PCR, PCR-restriction fragment length polymorphism, and conidial morphology. Journal of Invertebrate Pathology, 78(4), 251-259.
  35. Kaplan, E. L., & Meier, P. (1958). Nonparametric estimation from incomplete observations. Journal of the American Statistical Association, 53(282), 457-481.
  36. Kassambara, A., Kosinski, M., Biecek, P., & Scheipl, F. (2019). survminer: Drawing Survival Curves using ‘ggplot2’. R package version 0.4.6. https://cran.r-project.org/web/packages/survminer/index.html
  37. Kemen, E., & Jones, J. D. G. (2012). Obligate biotroph parasitism: Can we link genomes to lifestyles? Trends in Plant Science, 17(8), 448-457.
  38. Kepler, R. M., Humber, R. A., Bischoff, J. F., & Rehner, S. A. (2014). Clarification of generic and species boundaries for Metarhizium and related fungi through multigene phylogenetics. Mycologia, 106(4), 811-829.
  39. Kepler, R. M., Ugine, T. A., Maul, J. E., Cavigelli, M. A., & Rehner, S. A. (2015). Community composition and population genetics of insect pathogenic fungi in the genus Metarhizium from soils of a long-term agricultural research system. Environmental Microbiology, 17(8), 2791-2804.
  40. Kershaw, M. J., Moorhouse, E. R., Bateman, R., Reynolds, S. E., & Charnley, A. K. (1999). The role of destruxins in the pathogenicity of Metarhizium anisopliae for three species of insect. Journal of Invertebrate Pathology, 74(3), 213-223. https://doi.org/10.1006/jipa.1999.4884
  41. Keyser, C. A., De Fine Licht, H. H., Steinwender, B. M., & Meyling, N. V. (2015). Diversity within the entomopathogenic fungal species Metarhizium flavoviride associated with agricultural crops in Denmark. BMC Microbiology, 15(1), 249.
  42. Kobmoo, N., Arnamnart, N., Pootakham, W., Sonthirod, C., Khonsanit, A., Kuephadungphan, W., Suntivich, R., Mosunova, O. V., Giraud, T., & Luangsa-Ard, J. J. (2021). The integrative taxonomy of Beauveria asiatica and B. bassiana species complexes with whole-genome sequencing, morphometric and chemical analyses. Persoonia: Molecular Phylogeny and Evolution of Fungi, 47, 136-150.
  43. Lappa, N. V. (1978). Practical applications of entomopathogenic muscardine fungi [Beauveria bassiana, Paecilomyces farinosus against the codling moth, Colorado beetle, Ukraine; USSR]. Proceedings of the 1st Joint US USSR Conference on the Production, Selection and Standardization of Entomopathogenic Fungi of Project V.
  44. Lenth, R., Singmann, H., Love, J., Buerkner, P., & Herve, M. (2019). Package ‘emmeans’. R package version, 1.8-5. https://CRAN.R-project.org/package=emmeans
  45. Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., & Durbin, R. (2009). The sequence alignment/map format and SAMtools. Bioinformatics, 25(16), 2078-2079.
  46. Li, J., & Xia, Y. (2022). Host-Pathogen Interactions between Metarhizium spp. and Locusts. Journal of Fungi, 8(6), 602.
  47. Li, Z., Alves, S. B., Roberts, D. W., Fan, M., Delalibera, I., Tang, J., Lopes, R. B., Faria, M., & Rangel, D. E. N. (2010). Biological control of insects in Brazil and China: History, current programs and reasons for their successes using entomopathogenic fungi. Biocontrol Science and Technology, 20(2), 117-136.
  48. Liu, H., Skinner, M., Parker, B. L., & Brownbridge, M. (2002). Pathogenicity of Beauveria bassiana, Metarhizium anisopliae (Deuteromycotina: Hyphomycetes), and other entomopathogenic fungi against Lygus lineolaris (Hemiptera: Miridae). Journal of Economic Entomology, 95(4), 675-681.
  49. Lovett, B., Bilgo, E., Millogo, S. A., Ouattarra, A. K., Sare, I., Gnambani, E. J., Dabire, R. K., Diabate, A., & St. Leger, R. J. (2019). Transgenic Metarhizium rapidly kills mosquitoes in a malaria-endemic region of Burkina Faso. Science, 364(6443), 894-897.
  50. Ma, L. J., van der Does, H. C., Borkovich, K. A., Coleman, J. J., Daboussi, M. J., Di Pietro, A., Dufresne, M., Freitag, M., Grabherr, M., Henrissat, B., Houterman, P. M., Kang, S., Shim, W. B., Woloshuk, C., Xie, X., Xu, J. R., Antoniw, J., Baker, S. E., Bluhm, B. H., … Rep, M. (2010). Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature, 464(7287), 367-373.
  51. Magnuson, B., Bedi, K., & Ljungman, M. (2016). Genome stability versus transcript diversity. DNA Repair, 44, 81-86.
  52. Mburu, D. M., Ochola, L., Maniania, N. K., Njagi, P. G. N., Gitonga, L. M., Ndung'u, M. W., Wanjoya, A. K., & Hassanali, A. (2009). Relationship between virulence and repellency of entomopathogenic isolates of Metarhizium anisopliae and Beauveria bassiana to the termite Macrotermes michaelseni. Journal of Insect Physiology, 55(9), 774-780.
  53. Miller, M. A., Pfeiffer, W., & Schwartz, T. (2010). Creating the CIPRES science gateway for inference of large phylogenetic trees. In 2010 Gateway Computing Environments Workshop (GCE) (pp. 1-8). IEEE. https://doi.org/10.1109/GCE.2010.5676129
  54. Möller, E. M., Bahnweg, G., Sandermann, H., & Geiger, H. H. (1992). A simple and efficient protocol for isolation of high molecular weight DNA from filamentous fungi, fruit bodies, and infected plant tissues. Nucleic Acids Research, 20(22), 6115-6116.
  55. Mongkolsamrit, S., Khonsanit, A., Thanakitpipattana, D., Tasanathai, K., Noisripoom, W., Lamlertthon, S., Himaman, W., Houbraken, J., Samson, R. A., & Luangsa-ard, J. (2020). Revisiting Metarhizium and the description of new species from Thailand. Studies in Mycology, 95, 171-251.
  56. Mühlhausen, S., Findeisen, P., Plessmann, U., Urlaub, H., & Kollmar, M. (2016). A novel nuclear genetic code alteration in yeasts and the evolution of codon reassignment in eukaryotes. Genome Research, 26(7), 945-955.
  57. Nelson, C. W., Moncla, L. H., & Hughes, A. L. (2015). SNPGenie: Estimating evolutionary parameters to detect natural selection using pooled next-generation sequencing data. Bioinformatics, 31(22), 3709-3711.
  58. Nielsen, K. N., Salgado, J. F. M., Natsopoulou, M. E., Kristensen, T., Stajich, J. E., & De Fine Licht, H. H. (2021). Diploidy within a haploid genus of entomopathogenic fungi. Genome Biology and Evolution, 13(7), evab158.
  59. Paradza, V. M., Khamis, F. M., Yusuf, A. A., Subramanian, S., & Akutse, K. S. (2021). Virulence and horizontal transmission of Metarhizium anisopliae by the adults of the greenhouse whitefly Trialeurodes vaporariorum (Hemiptera: Aleyrodidae) and the efficacy of oil formulations against its nymphs. Heliyon, 7(11), e08277.
  60. Peck, S. B., Mapes, C. C., Dorchin, N., Heppner, J. B., Buss, E. A., Moya-Raygoza, G., Hoy, M. A., Franz, G., Handler, A. M., Hoy, M. A., Capinera, J. L., Heppner, J. B., Striganova, B. R., Heppner, J. B., Heppner, J. B., Heppner, J. B., Heppner, J. B., Goula, M., Northfield, T. D., … Brewer, W. (2008). Grasshopper and locust pests in Africa. In: J. L. Capinera (Ed.), Encyclopedia of entomology (pp. 1666-1675). Springer.
  61. Pedrini, N. (2022). The entomopathogenic fungus Beauveria bassiana shows its toxic side within insects: Expression of genes encoding secondary metabolites during pathogenesis. Journal of Fungi, 8(5), 488.
  62. Peng, G., Wang, Z., Yin, Y., Zeng, D., & Xia, Y. (2008). Field trials of Metarhizium anisopliae var. acridum (Ascomycota: Hypocreales) against oriental migratory locusts, Locusta migratoria manilensis (Meyen) in Northern China. Crop Protection, 27(9), 1244-1250.
  63. Pfeifer, B., Wittelsbürger, U., Ramos-Onsins, S. E., & Lercher, M. J. (2014). PopGenome: An efficient Swiss army knife for population genomic analyses in R. Molecular Biology and Evolution, 31(7), 1929-1936.
  64. Poulin, R. (2007). Evolutionary ecology of parasites. Princeton University Press.
  65. Pringle, A., & Taylor, J. W. (2002). The fitness of filamentous fungi. Trends in Microbiology, 10(10), 474-481.
  66. Quinlan, A. R., & Hall, I. M. (2010). BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics, 26(6), 841-842.
  67. Rehner, S. A. (2020). Genetic structure of Metarhizium species in western USA: Finite populations composed of divergent clonal lineages with limited evidence for recent recombination. Journal of Invertebrate Pathology, 177, 107491.
  68. Reingold, V., Kottakota, C., Birnbaum, N., Goldenberg, M., Lebedev, G., Ghanim, M., & Ment, D. (2021). Intraspecies variation of Metarhizium brunneum against the green peach aphid, Myzus persicae, provides insight into the complexity of disease progression. Pest Management Science, 77(5), 2557-2567.
  69. Selker, E. (2002). Repeat-induced gene silencing in fungi. Advances in Genetics, 46, 439-450.
  70. Simões, J., Bezerra, A. R., Moura, G. R., Araújo, H., Gut, I., Bayes, M., & Santos, M. A. S. (2016). The fungus Candida albicans tolerates ambiguity at multiple codons. Frontiers in Microbiology, 7, 401.
  71. Song, H. (2018). Biodiversity of orthoptera. In R. G. Foottit & P. H. Adler (Eds.), Insect biodiversity (pp. 245-279). John Wiley & Sons, Ltd.
  72. Song, H., Béthoux, O., Shin, S., Donath, A., Letsch, H., Liu, S., McKenna, D. D., Meng, G., Misof, B., Podsiadlowski, L., Zhou, X., Wipfler, B., & Simon, S. (2020). Phylogenomic analysis sheds light on the evolutionary pathways towards acoustic communication in Orthoptera. Nature Communications, 11(1), 4939.
  73. St Leger, R., Joshi, L., Bidochka, M. J., & Roberts, D. W. (1996). Construction of an improved mycoinsecticide overexpressing a toxic protease. Proceedings of the National Academy of Sciences of the United States of America, 93(13), 6349-6354.
  74. St. Leger, R. J., & Wang, J. B. (2020). Metarhizium: Jack of all trades, master of many. Open Biology, 10(12), 200307.
  75. Stajich, J. E. (2004). Disentangling the effects of demography and selection in human history. Molecular Biology and Evolution, 22(1), 63-73.
  76. Stajich, J. E., & Hahn, M. W. (2005). Disentangling the effects of demography and selection in human history. Molecular Biology and Evolution, 22(1), 63-73.
  77. Stamatakis, A. (2014). RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30(9), 1312-1313.
  78. Steinwender, B. M., Enkerli, J., Widmer, F., Eilenberg, J., Thorup-Kristensen, K., & Meyling, N. V. (2014). Molecular diversity of the entomopathogenic fungal Metarhizium community within an agroecosystem. Journal of Invertebrate Pathology, 123, 6-12.
  79. Suvakov, M., Panda, A., Diesh, C., Holmes, I., & Abyzov, A. (2021). CNVpytor: A tool for copy number variation detection and analysis from read depth and allele imbalance in whole-genome sequencing. GigaScience, 10(11), 1-9.
  80. Symmes, E. J., & Perring, T. M. (2007). Intraspecific variation in zucchini yellow mosaic virus transmission by Myzus persicae and the impact of aphid host plant. Journal of Economic Entomology, 100(6), 1764-1772.
  81. Tadele, S., & Emana, G. (2017). Entomopathogenic effect of Beauveria bassiana (Bals.) and Metarrhizium anisopliae (Metschn.) on Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) larvae under laboratory and glasshouse conditions in Ethiopia. Journal of Plant Pathology and Microbiology, 8(5), 411-414.
  82. Tajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 123(3), 585-595.
  83. Talaei-Hassanloui, R., Kharazi-Pakdel, A., Goettel, M., & Mozaffari, J. (2006). Variation in virulence of Beauveria bassiana isolates and its relatedness to some morphological characteristics. Biocontrol Science and Technology, 16(5), 525-534.
  84. Therneau, T. M. (2018). Package ‘survival’, R Package version 2.42-6. https://cran.r-project.org/web/views/Survival.html
  85. Therneau, T. M. (2022). Mixed Effects Cox Models, R Package version 2.2-16. http://cran.r-project.org/package=coxme. https://cran.r-project.org/web/packages/coxme/index.html
  86. Valero-Jiménez, C. A., Debets, A. J., van Kan, J. A. L., Schoustra, S. E., Takken, W., Zwaan, B. J., & Koenraadt, C. J. (2014). Natural variation in virulence of the entomopathogenic fungus Beauveria bassiana against malaria mosquitoes. Malaria Journal, 13(1), 479.
  87. Valero-Jiménez, C. A., Faino, L., Spring in't Veld, D., Smit, S., Zwaan, B. J., & van Kan, J. A. L. (2016). Comparative genomics of Beauveria bassiana: Uncovering signatures of virulence against mosquitoes. BMC Genomics, 17(1), 1-11.
  88. Valero-Jiménez, C. A., van Kan, J. A. L., Koenraadt, C. J. M., Zwaan, B. J., & Schoustra, S. E. (2017). Experimental evolution to increase the efficacy of the entomopathogenic fungus Beauveria bassiana against malaria mosquitoes: Effects on mycelial growth and virulence. Evolutionary Applications, 10(5), 433-443.
  89. Wang, B., Kang, Q., Wang, B., Kang, Q., Lu, Y., Bai, L., & Wang, C. (2012). Unveiling the biosynthetic puzzle of destruxins in Metarhizium species. Proceedings of the National Academy of Sciences of the United States of America, 109(4), 1287-1292.
  90. Wang, C., & St. Leger, R. J. (2005). Developmental and transcriptional responses to host and nonhost cuticles by the specific locust pathogen Metarhizium anisopliae var. acridum. Eukaryotic Cell, 4(5), 937-947.
  91. Wang, J. B., St. Leger, R. J., & Wang, C. (2016). Advances in genomics of entomopathogenic fungi. Advances in Genetics, 94, 67-105.
  92. Wang, X., & Pan, T. (2016). Stress response and adaptation mediated by amino acid misincorporation during protein synthesis. Advances in Nutrition, 7(4), 773S-779S.
  93. Warnes, G. R., Bolker, B., Bonebakker, L., Gentleman, R., Huber, W., Liaw, A., Lumley, T., Maechler, M., Magnusson, A., Moeller, S., Schwartz, M., Venables, B., & Galili, T. (2005). Various R Programming Tools for Plotting Data. https://cran.r-project.org/web/packages/gplots/index.html
  94. Xia, E. H., Yang, D. R., Jiang, J. J., Zhang, Q. J., Liu, Y., Liu, Y. L., Zhang, Y., Zhang, H. B., Shi, C., Tong, Y., Kim, C., Chen, H., Peng, Y. Q., Yu, Y., Zhang, W., Eichler, E. E., & Gao, L. Z. (2017). The caterpillar fungus, Ophiocordyceps sinensis, genome provides insights into highland adaptation of fungal pathogenicity. Scientific Reports, 7(1), 1806.
  95. Zeng, Z., Sun, H., Vainio, E. J., Raffaello, T., Kovalchuk, A., Morin, E., Duplessis, S., & Asiegbu, F. O. (2018). Intraspecific comparative genomics of isolates of the Norway spruce pathogen (Heterobasidion parviporum) and identification of its potential virulence factors. BMC Genomics, 19(1), 220.
  96. Zhang, J., Jiang, H., Du, Y., Keyhani, N. O., Xia, Y., & Jin, K. (2019). Members of chitin synthase family in Metarhizium acridum differentially affect fungal growth, stress tolerances, cell wall integrity and virulence. PLoS Pathogens, 15(8), e1007964.
  97. Zhang, L. W., Liu, Y. J., Yao, J., Wang, B., Huang, B., Li, Z. Z., Fan, M. Z., & Sun, J. H. (2011). Evaluation of Beauveria bassiana (Hyphomycetes) isolates as potential agents for control of Dendroctonus valens. Insect Science, 18(2), 209-216.
  98. Zhang, Z., Lu, Y., Xu, W., Sui, L., Du, Q., Wang, Y., Zhao, Y., & Li, Q. (2020). Influence of genetic diversity of seventeen Beauveria bassiana isolates from different hosts on virulence by comparative genomics. BMC Genomics, 21(1), 451.

MeSH Term

Animals
Grasshoppers
Virulence
Insecta
Genomics
Biological Variation, Population

Word Cloud

Created with Highcharts 10.0.0virulencevariationdiversityacridumintraspecificlocustisolatesMpatternspathogenfungalnaturaltwospeciesgrowthgenomicvariabilityshownamongIntraspecificcrucialunderstandingevolutionmaintenanceadaptationhost-pathogeninteractionsTraitsassociatedoftensignificantsourcedirectlyimpactedlocalselectionpressuresspecialistentomopathogenMetarhiziumwidelyimplementedbiologicalcontrolagentpeststropicalregionsworldHoweverstudiesaccountedphenotypicgeneticexamineninespanningknowngeographicdistributionterms1towards2ratesthreediversenutrientsources3comparativegenomicsuncoverSignificantsuggestingecologicalspecializationDifferentindicativepotentialhostpreferenceAdditionallyhighlevelobservedrevealingincreasedsubtilisin-likeproteasesPr1familyresultsculminatefirstin-depthanalysisregardingmultiplefacetsofferingopportunitiesunderstandcriticalevolutionarydriverspathogensPhenotypicinsecttraitsreveallocust-specificMethariziumOrthopterabiocontrolentomopathogenicfungi

Similar Articles

Cited By