Deconstructing Electrostatics of Functionalized Metal Nanoparticles from Molecular Dynamics Simulations.

Margherita Bini, Valentina Tozzini, Giorgia Brancolini
Author Information
  1. Margherita Bini: Institute Nanoscience-CNR, Lab NEST SNS, Pisa 56127, Italy. ORCID
  2. Valentina Tozzini: Institute Nanoscience-CNR, Lab NEST SNS, Pisa 56127, Italy. ORCID
  3. Giorgia Brancolini: Institute Nanoscience-CNR, Center S3, Modena 41125, Italy. ORCID

Abstract

Gold nanoparticles (NPs) with different surface functionalizations can selectively interact with specific proteins, allowing a wide range of possible applications in biotechnology and biomedicine. To prevent their tendency to aggregate and to modulate their interaction with charged biomolecules or substrates (e.g., for biosensing applications), they can be functionalized with charged groups, introducing a mutual interaction which can be modulated by changing the ionic strength of the solvent. modeling of these systems is often addressed with low-resolution models, which must account for these effects in the, often implicit, solvent representation. Here, we present a systematic conformational dynamic characterization of ligand-coated gold nanoparticles with different sizes, charges, and functionalizations by means of atomistic molecular dynamics simulations. Based on these, we deconstruct their electrostatic properties and propose a general representation of their average-long-range interactions extendable to different sizes, charges, and ionic strengths. This study clarifies in detail the role of the different features of the NP (charge, size, structure) and of the ionic strength in determining the details of the interparticle interaction and represents the first step toward a general strategy for the parametrization of NP coarse-grained models able to account for varying ionic strengths.

References

  1. J Comput Chem. 2005 Dec;26(16):1701-18 [PMID: 16211538]
  2. J Am Chem Soc. 2014 Aug 20;136(33):11776-82 [PMID: 25068615]
  3. J Chem Theory Comput. 2023 Mar 14;19(5):1582-1591 [PMID: 36795071]
  4. J Mol Graph. 1996 Feb;14(1):33-8, 27-8 [PMID: 8744570]
  5. ACS Nano. 2017 Mar 28;11(3):2313-2381 [PMID: 28290206]
  6. J Chem Theory Comput. 2013 Apr 9;9(4):2126-2136 [PMID: 23585741]
  7. Small. 2016 May;12(18):2394 [PMID: 27151827]
  8. Curr Opin Chem Biol. 2010 Dec;14(6):728-36 [PMID: 20801707]
  9. Anal Chem. 2015 Jan 6;87(1):216-29 [PMID: 25275676]
  10. Nanomaterials (Basel). 2021 Apr 13;11(4): [PMID: 33924735]
  11. Sci Rep. 2021 Aug 30;11(1):17386 [PMID: 34462496]
  12. J Phys Chem B. 2022 Dec 15;126(49):10400-10426 [PMID: 36473089]
  13. Nat Chem. 2012 May 22;4(6):443-55 [PMID: 22614378]
  14. Nucleic Acids Res. 2011 Jul;39(Web Server issue):W511-7 [PMID: 21609950]
  15. J Phys Chem B. 2016 Aug 25;120(33):8571-9 [PMID: 27150459]
  16. J Phys Condens Matter. 2010 Sep 15;22(36):364108 [PMID: 21386524]
  17. J Chem Phys. 2020 Jan 14;152(2):024121 [PMID: 31941309]
  18. Front Bioeng Biotechnol. 2018 Oct 08;6:143 [PMID: 30349817]
  19. Int J Mol Sci. 2018 Dec 13;19(12): [PMID: 30551592]
  20. Int J Mol Sci. 2019 Aug 08;20(16): [PMID: 31398866]
  21. ACS Nano. 2022 Apr 26;16(4):6282-6292 [PMID: 35289596]
  22. J Chem Phys. 2015 Dec 28;143(24):243138 [PMID: 26723623]
  23. Int J Mol Sci. 2022 Feb 21;23(4): [PMID: 35216496]
  24. J Chem Theory Comput. 2016 Mar 8;12(3):1342-50 [PMID: 26845636]
  25. Proc Natl Acad Sci U S A. 2001 Aug 28;98(18):10037-41 [PMID: 11517324]
  26. J Chem Theory Comput. 2015 Feb 10;11(2):766-79 [PMID: 25691833]
  27. J Nanosci Nanotechnol. 2015 Mar;15(3):1869-94 [PMID: 26413604]
  28. Nanoscale. 2022 Feb 10;14(6):2411-2418 [PMID: 35089292]
  29. Biophys J. 2014 Dec 2;107(11):2579-91 [PMID: 25468337]
  30. Nanoscale. 2014 Jul 21;6(14):7903-11 [PMID: 24882429]
  31. J Chem Theory Comput. 2013 Nov 12;9(11):4874-89 [PMID: 26583407]
  32. J Chem Phys. 2007 Jan 7;126(1):014101 [PMID: 17212484]
  33. RSC Adv. 2015 Jan 1;5(127):105498 [PMID: 26989481]
  34. Soft Matter. 2022 Oct 26;18(41):7909-7916 [PMID: 36226486]
  35. Int J Mol Sci. 2021 Mar 31;22(7): [PMID: 33807225]
  36. J Comput Chem. 2009 Jul 15;30(9):1465-76 [PMID: 19037859]
  37. J Biol Chem. 2017 Jun 23;292(25):10630-10638 [PMID: 28468825]
  38. Proteins. 2009 Sep;76(4):946-58 [PMID: 19306343]

Word Cloud

Created with Highcharts 10.0.0differentioniccaninteractionnanoparticlesfunctionalizationsapplicationschargedstrengthsolventoftenmodelsaccountrepresentationsizeschargesgeneralstrengthsNPGoldNPssurfaceselectivelyinteractspecificproteinsallowingwiderangepossiblebiotechnologybiomedicinepreventtendencyaggregatemodulatebiomoleculessubstratesegbiosensingfunctionalizedgroupsintroducingmutualmodulatedchangingmodelingsystemsaddressedlow-resolutionmusteffectsimplicitpresentsystematicconformationaldynamiccharacterizationligand-coatedgoldmeansatomisticmoleculardynamicssimulationsBaseddeconstructelectrostaticpropertiesproposeaverage-long-rangeinteractionsextendablestudyclarifiesdetailrolefeatureschargesizestructuredeterminingdetailsinterparticlerepresentsfirststeptowardstrategyparametrizationcoarse-grainedablevaryingDeconstructingElectrostaticsFunctionalizedMetalNanoparticlesMolecularDynamicsSimulations

Similar Articles

Cited By