A Self-Adaptive and Regenerable Hydrogel Interfacial Evaporator with Adjustable Evaporation Area for Solar Water Purification.

Yue Liu, Ye Tian, Na Liu, Shuaiheng Zhao, Huajun Zhai, Jiujiang Ji, Wenqing Cao, Lei Tao, Yen Wei, Lin Feng
Author Information
  1. Yue Liu: Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China.
  2. Ye Tian: Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China.
  3. Na Liu: Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China.
  4. Shuaiheng Zhao: Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China.
  5. Huajun Zhai: Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China.
  6. Jiujiang Ji: Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China.
  7. Wenqing Cao: Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China.
  8. Lei Tao: Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China.
  9. Yen Wei: Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China.
  10. Lin Feng: Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China. ORCID

Abstract

Solar-driven interfacial evaporation is a potential water purification solution. Here, a novel regenerable hydrogel interfacial evaporator is designed with tunable water production. Such an evaporator is fabricated by readily mixing hydroxypropyl chitosan (HPCS) and dibenzaldehyde-functional poly(ethylene glycol) (DF-PEG) at ambient conditions. Dynamic Schiff base bonds bestow on the HPCS/DF-PEG hydrogel (HDH) evaporator self-adaptivity and pH responsiveness. The as-prepared HDH is enabled to spontaneously change shape to adapt to different molds, endowing the evaporator with adjustable evaporation area. The water production performance of the intelligent evaporator is first evaluated using tunable evaporation index (TEI, the tunable evaporated water mass per hour), which can be altered from 0 kg h to 3.21 kg h under one sun. Besides, the large-scale evaporator can be expediently fabricated by virtue of the self-adaptivity. Benefiting from the pH responsiveness, the HDH evaporator is successfully regenerated with the removal of organic dye by the liquefaction-dialysis-regeneration operations. Meanwhile, the re-created evaporator maintains the self-adaptive characteristic and almost constant water evaporation rate compared to that of the initial evaporator. Therefore, this distinctive concept provides a facile strategy to develop smart and recyclable solar-driven interfacial evaporators for flexible water purification.

Keywords

References

  1. M. M. Mekonnen, A. Y. Hoekstra, Sci. Adv. 2016, 2, 1500323.
  2. B. F. Thomas, J. S. Famiglietti, Sci. Rep. 2019, 9, 4124.
  3. T. V. Bartholomew, N. S. Siefert, M. S. Mauter, Environ. Sci. Technol. 2018, 52, 11813.
  4. S. Aly, H. Manzoor, S. Simson, A. Abotaleb, J. Lawler, A. N. Mabrouk, Desalination 2021, 519, 115221.
  5. L. Zhu, M. Gao, C. K. N. Peh, G. W. Ho, Nano Energy 2019, 57, 507.
  6. W. Guan, Y. Guo, G. Yu, Small 2021, 17, 2007176.
  7. P. Tao, G. Ni, C. Song, W. Shang, J. Wu, J. Zhu, G. Chen, T. Deng, Nat. Energy 2018, 3, 1031.
  8. Y. Pang, J. Zhang, R. Ma, Z. Qu, E. Lee, T. Luo, ACS Energy Lett. 2020, 5, 437.
  9. H. Ghasemi, G. Ni, A. M. Marconnet, J. Loomis, S. Yerci, N. Miljkovic, G. Chen, Nat. Commun. 2014, 5, 4449.
  10. H. Xie, W.-H. Xu, Y.u Du, J. Gong, R. Niu, T. Wu, J.-P. Qu, Small 2022, 18, 2200175.
  11. X. Li, Y. Tian, P. Zhang, N. Liu, H. Zhai, J. Ji, S. Zhao, Y. Liu, D. Xu, F. Wang, Y. Wei, L. Feng, Adv. Funct. Mater. 2023, 33, 2302019.
  12. C. T. K. Finnerty, A. K. Menon, K. M. Conway, D. Lee, M. Nelson, J. J. Urban, D. Sedlak, B. Mi, Environ. Sci. Technol. 2021, 55, 15435.
  13. X. Hu, W. Xu, L. Zhou, Y. Tan, Y. Wang, S. Zhu, J. Zhu, Adv. Mater. 2017, 29, 1604031.
  14. Y. Kuang, C. Chen, S. He, E. M. Hitz, Y. Wang, W. Gan, R. Mi, L. Hu, Adv. Mater. 2019, 31, 1900498.
  15. W. Chao, Y. Li, X. Sun, G. Cao, C. Wang, S.-H. Ho, Chem. Eng. J. 2021, 405, 126703.
  16. W. Li, Z. Li, K. Bertelsmann, D. E. Fan, Adv. Mater. 2019, 31, 1900720.
  17. X. Dong, H. Li, L. Gao, C. Chen, X. Shi, Y. Du, H. Deng, Small 2022, 18, 2107156.
  18. Z.-Y. Wang, Y.-J. Zhu, Y.-Q. Chen, H.-P. Yu, Z.-C. Xiong, Small 2023, 19, 2206917.
  19. M.-Q. Yang, C. F. Tan, W. Lu, K. Zeng, G. W. Ho, Adv. Funct. Mater. 2020, 30, 2004460.
  20. X. Liu, F. Chen, Y. Li, H. Jiang, D. D. Mishra, F. Yu, Z. Chen, C. Hu, Y. Chen, L. Qu, W. Zheng, Adv. Mater. 2022, 34, 2203137.
  21. H. Zou, X. Meng, X. Zhao, J. Qiu, Adv. Mater. 2023, 35, 2207262.
  22. R. Niu, Y. Ding, L. Hao, J. Ren, J. Gong, J. Qu, ACS Appl. Mater. Interfaces 2022, 14, 45533.
  23. L. Zhao, Z. Yang, J. Wang, Y. Zhou, P. Cao, J. Zhang, P. Yuan, Y. Zhang, Q. Li, Chem. Eng. J. 2023, 451, 138676.
  24. F. Zhao, X. Zhou, Y. Shi, X. Qian, M. Alexander, X. Zhao, S. Mendez, R. Yang, L. Qu, G. Yu, Nat. Nanotechnol. 2018, 13, 489.
  25. Y. Guo, J. Bae, Z. Fang, P. Li, F. Zhao, G. Yu, Chem. Rev. 2020, 120, 7642.
  26. F. Zhao, Y. Guo, X. Zhou, W. Shi, G. Yu, Nat. Rev. Mater. 2020, 5, 388.
  27. P. Zhang, F. Zhao, W. Shi, H. Lu, X. Zhou, Y. Guo, G. Yu, Adv. Mater. 2022, 34, 2110548.
  28. S. Meng, C.-Y. Tang, J. Yang, M.-B. Yang, W. Yang, Adv. Sci. 2022, 9, 2204187.
  29. X. Zhou, F. Zhao, Y. Guo, Y. Zhang, G. Yu, Energy Environ. Sci. 2018, 11, 1985.
  30. C. Li, S. Cao, J. Lutzki, J. Yang, T. Konegger, F. Kleitz, A. Thomas, J. Am. Chem. Soc. 2022, 144, 3083.
  31. Z. Shao, T. Yin, J. Jiang, Y. He, T. Xiang, S. Zhou, Bioact. Mater. 2023, 20, 561.
  32. Y. Zhang, L. Tao, S. Li, Y. Wei, Biomacromolecules 2011, 12, 2894.
  33. F. Li, N. Li, S. Wang, L. Qiao, L. Yu, P. Murto, X. Xu, Adv. Funct. Mater. 2021, 31, 2104464.
  34. Y. Li, X. Wang, Y.-N. Fu, Y. Wei, L. Zhao, L. Tao, ACS Appl. Mater. Interfaces 2018, 10, 26046.
  35. X. Jiang, N. Yan, M. Wang, M. Feng, Q. Guan, L. Xu, Sci. Total Environ. 2022, 830, 154545.
  36. Y. Wang, W. Li, Y. Wei, Q. Chen, ACS Appl. Mater. Interfaces 2023, 15, 14379.
  37. H. Lu, M. Li, X. Wang, Z. Wang, M. Pi, W. Cui, R. Ran, Chem. Eng. J. 2022, 450, 138257.
  38. X. Zhou, F. Zhao, Y. Guo, B. Rosenberger, G. Yu, Sci. Adv. 2019, 5, eaaw5484.
  39. V. Crupi, S. Interdonato, F. Longo, D. Majolino, P. Migliardo, V. Venuti, J. Raman Spectrosc. 2008, 39, 244.
  40. A. W. Knight, N. G. Kalugin, E. Coker, A. G. Ilgen, Sci. Rep. 2019, 9, 8246.
  41. Q.-F. Guan, Z.-M. Han, Z.-C. Ling, H.-B. Yang, S.-H. Yu, Nano Lett. 2020, 20, 5699.
  42. L. Zhang, B. Tang, J. Wu, R. Li, P. Wang, Adv. Mater. 2015, 27, 4889.
  43. G. Ni, S. H. Zandavi, S. M. Javid, S. V. Boriskina, T. A. Cooper, G. Chen, Energy Environ. Sci. 2018, 11, 1510.
  44. Y. Guo, H. Lu, F. Zhao, X. Zhou, W. Shi, G. Yu, Adv. Mater. 2020, 32, 1907061.
  45. I. Halevy, A. Bachan, Science 2017, 355, 1069.

Grants

  1. 2022YFB3804901/National Key Research and Development Program of China
  2. 2022YFB3804900/National Key Research and Development Program of China
  3. 52173111/National Natural Science Foundation of China

Word Cloud

Created with Highcharts 10.0.0evaporatorevaporationwaterinterfacialtunableHDHpurificationhydrogelproductionfabricatedself-adaptivitypHresponsivenessadjustableareaindexcanhself-adaptivesolar-drivenSolar-drivenpotentialsolutionnovelregenerabledesignedreadilymixinghydroxypropylchitosanHPCSdibenzaldehyde-functionalpolyethyleneglycolDF-PEGambientconditionsDynamicSchiffbasebondsbestowHPCS/DF-PEGas-preparedenabledspontaneouslychangeshapeadaptdifferentmoldsendowingperformanceintelligentfirstevaluatedusingTEIevaporatedmassperhouraltered0 kg321 kgonesunBesideslarge-scaleexpedientlyvirtueBenefitingsuccessfullyregeneratedremovalorganicdyeliquefaction-dialysis-regenerationoperationsMeanwhilere-createdmaintainscharacteristicalmostconstantratecomparedinitialThereforedistinctiveconceptprovidesfacilestrategydevelopsmartrecyclableevaporatorsflexibleSelf-AdaptiveRegenerableHydrogelInterfacialEvaporatorAdjustableEvaporationAreaSolarWaterPurificationregeneration

Similar Articles

Cited By