Determination of the cutoff point for Smartphone Application-Based Addiction Scale for adolescents: a latent profile analysis.

Pu Peng, Zhangming Chen, Silan Ren, Yi Liu, Ruini He, Yudiao Liang, Youguo Tan, Jinsong Tang, Xiaogang Chen, Yanhui Liao
Author Information
  1. Pu Peng: Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China.
  2. Zhangming Chen: Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
  3. Silan Ren: Department of Nursing, Sichuan Vocational College of Health and Rehabilitation, Zigong, Sichuan, China.
  4. Yi Liu: Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China.
  5. Ruini He: Department of Psychiatry, Zigong Mental Health Center, Zigong, Sichuan, China.
  6. Yudiao Liang: Department of Psychiatry, Zigong Mental Health Center, Zigong, Sichuan, China.
  7. Youguo Tan: Department of Psychiatry, Zigong Mental Health Center, Zigong, Sichuan, China.
  8. Jinsong Tang: Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China.
  9. Xiaogang Chen: Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
  10. Yanhui Liao: Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China. liaoyanhui@zju.edu.cn.

Abstract

BACKGROUNDS: The Smartphone Application-Based Addiction Scale (SABAS) is a validated 6-item measurement tool for assessing problematic smartphone use (PSU). However, the absence of established cutoff points for SABAS hinders its utilities. This study aimed to determine the optimal cutoff point for SABAS through latent profile analysis (LPA) and receiver operating characteristic curve (ROC) analyses among 63, 205. Chinese adolescents. Additionally, the study explored whether PSU screening with SABAS could effectively capture problematic social media use (PSMU) and internet gaming disorder (IGD).
METHOD: We recruited 63,205. adolescents using cluster sampling. Validated questionnaires were used to assess PSMU, IGD, and mental health (depression, anxiety, sleep disturbances, well-being, resilience, and externalizing and internalizing problems).
RESULTS: LPA identified a 3-class model for PSU, including low-risk users (38.6%, n = 24,388.), middle-risk users (42.5%, n = 26,885.), and high-risk users (18.9%, n = 11,932.). High-risk users were regarded as "PSU cases" in ROC analysis, which demonstrated an optimal cut-off point of 23 (sensitivity: 98.1%, specificity: 96.8%). According to the cutoff point, 21.1% (n = 13,317.) were identified as PSU. PSU adolescents displayed higher PSMU, IGD, and worse mental health. PSU screening effectively captured IGD (sensitivity: 86.8%, specificity: 84.5%) and PSMU (sensitivity: 84.5%, specificity: 80.2%).
CONCLUSION: A potential ideal threshold for utilizing SABAS to identify PSU could be 23 (out of 36). Employing SABAS as a screening tool for PSU holds the potential to reliably pinpoint both IGD and PSMU.

Keywords

References

  1. Med Educ Online. 2022 Dec;27(1):2058866 [PMID: 35356865]
  2. JMIR Ment Health. 2022 Apr 14;9(4):e33450 [PMID: 35436240]
  3. Addict Behav. 2020 Nov;110:106540 [PMID: 32682269]
  4. Front Psychol. 2020 Oct 15;11:596961 [PMID: 33178090]
  5. Compr Psychiatry. 2023 Jan;120:152356 [PMID: 36403560]
  6. J Affect Disord. 2021 Oct 1;293:415-421 [PMID: 34246950]
  7. Curr Psychiatry Rep. 2022 Sep;24(9):399-406 [PMID: 35792965]
  8. Int J Ment Health Addict. 2018;16(2):393-403 [PMID: 29670500]
  9. Front Public Health. 2023 Jul 28;11:1223429 [PMID: 37575111]
  10. Front Psychiatry. 2022 Mar 14;13:820777 [PMID: 35360127]
  11. J Behav Addict. 2018 Jun 1;7(2):252-259 [PMID: 29895183]
  12. Addict Behav. 2023 Sep;144:107715 [PMID: 37059002]
  13. J Affect Disord. 2019 Mar 1;246:209-216 [PMID: 30583147]
  14. Heliyon. 2022 Aug 24;8(8):e10403 [PMID: 36090230]
  15. J Affect Disord. 2022 Sep 15;313:235-242 [PMID: 35788366]
  16. Front Psychiatry. 2020 May 25;11:470 [PMID: 32528331]
  17. BMC Psychiatry. 2023 Jan 13;23(1):36 [PMID: 36639669]
  18. JMIR Public Health Surveill. 2022 Jan 27;8(1):e27719 [PMID: 34081596]
  19. J Behav Addict. 2021 Sep 15;10(3):731-746 [PMID: 34529588]
  20. J Affect Disord. 2017 Jan 01;207:251-259 [PMID: 27736736]
  21. BMC Psychiatry. 2022 Nov 30;22(1):747 [PMID: 36451113]
  22. J Behav Addict. 2021 May 18;10(2):281-290 [PMID: 34010148]
  23. Curr Psychol. 2022 Oct 29;:1-9 [PMID: 36340889]
  24. Int J Environ Res Public Health. 2022 Dec 09;19(24): [PMID: 36554468]
  25. Addict Behav. 2020 Feb;101:105960 [PMID: 31072648]
  26. J Behav Addict. 2019 Dec 01;8(4):725-732 [PMID: 32359239]
  27. Risk Manag Healthc Policy. 2021 Sep 13;14:3797-3805 [PMID: 34548828]
  28. BMC Psychiatry. 2016 Nov 17;16(1):408 [PMID: 27855666]
  29. J Affect Disord. 2020 Jan 15;261:211-220 [PMID: 31654919]
  30. Front Psychiatry. 2020 Sep 15;11:573473 [PMID: 33101087]
  31. Int J Ment Health Addict. 2022 Mar 31;:1-13 [PMID: 35382159]
  32. Heliyon. 2023 Feb;9(2):e13273 [PMID: 36743853]
  33. Am J Epidemiol. 2014 Feb 15;179(4):423-31 [PMID: 24272278]
  34. PLoS One. 2013;8(2):e56936 [PMID: 23468893]
  35. J Behav Addict. 2020 Aug 21;9(3):698-708 [PMID: 32829311]
  36. BMC Psychiatry. 2023 May 8;23(1):321 [PMID: 37158854]
  37. PLoS One. 2018 Oct 17;13(10):e0205389 [PMID: 30332481]
  38. Clin Psychol Rev. 2022 Mar;92:102128 [PMID: 35150965]
  39. Compr Psychiatry. 2013 Aug;54(6):720-30 [PMID: 23433222]
  40. Front Psychol. 2020 May 05;11:672 [PMID: 32431636]
  41. Eur Child Adolesc Psychiatry. 2020 Jun;29(6):749-758 [PMID: 32363492]
  42. J Med Internet Res. 2022 Nov 30;24(11):e38108 [PMID: 36449336]
  43. Addict Behav. 2022 Dec;135:107451 [PMID: 35939963]
  44. Compr Psychiatry. 2022 Jan;112:152285 [PMID: 34798535]
  45. Psychiatr Q. 2019 Mar;90(1):117-128 [PMID: 30328020]
  46. Front Psychiatry. 2020 Sep 03;11:875 [PMID: 33101070]

MeSH Term

Adolescent
Humans
Smartphone
Internet Addiction Disorder
Mobile Applications
Anxiety
Anxiety Disorders

Word Cloud

Created with Highcharts 10.0.0PSUSABASPSMUIGDusecutoffpointusersSmartphoneApplication-BasedAddictionScaleanalysisadolescentsscreening5%sensitivity:specificity:toolproblematicsmartphonestudyoptimallatentprofileLPAROC63205effectivelysocialmediagamingdisordermentalhealthidentified231%8%84potentialProblematicBACKGROUNDS:validated6-itemmeasurementassessingHoweverabsenceestablishedpointshindersutilitiesaimeddeterminereceiveroperatingcharacteristiccurveanalysesamongChineseAdditionallyexploredwhethercaptureinternetMETHOD:recruitedusingclustersamplingValidatedquestionnairesusedassessdepressionanxietysleepdisturbanceswell-beingresilienceexternalizinginternalizingproblemsRESULTS:3-classmodelincludinglow-risk386%n = 24388middle-risk42n = 26885high-risk189%n = 11932High-riskregarded"PSUcases"demonstratedcut-off9896According21n = 13317displayedhigherworsecaptured86802%CONCLUSION:idealthresholdutilizingidentify36EmployingholdsreliablypinpointDeterminationadolescents:Internet

Similar Articles

Cited By