Signaling circuits and the apical extracellular matrix in aging: connections identified in the nematode .

Hannah Reich, Cathy Savage-Dunn
Author Information
  1. Hannah Reich: Department of Biology, Queens College, City University of New York, Flushing, New York, United States.
  2. Cathy Savage-Dunn: Department of Biology, Queens College, City University of New York, Flushing, New York, United States. ORCID

Abstract

Numerous conserved signaling pathways play critical roles in aging, including insulin/IGF-1, TGF-β, and Wnt pathways. Some of these pathways also play prominent roles in the formation and maintenance of the extracellular matrix. The nematode has been an enduringly productive system for the identification of conserved mechanisms of biological aging. Recent studies in highlight the regulatory circuits between conserved signaling pathways and the extracellular matrix, revealing a bidirectional relationship between these factors and providing a platform to address how regulation of and by the extracellular matrix can impact lifespan and organismal health during aging. These discoveries provide new opportunities for clinical advances and novel therapeutic strategies.

Keywords

References

  1. Lab Chip. 2010 Mar 7;10(5):589-97 [PMID: 20162234]
  2. G3 (Bethesda). 2022 Nov 4;12(11): [PMID: 36000892]
  3. Dev Dyn. 2003 Mar;226(3):523-39 [PMID: 12619137]
  4. Nature. 2010 Mar 25;464(7288):504-12 [PMID: 20336132]
  5. Mt Sinai J Med. 2003 Jan;70(1):3-22 [PMID: 12516005]
  6. Dev Biol. 2007 May 15;305(2):714-25 [PMID: 17397820]
  7. Curr Opin Cell Biol. 1995 Oct;7(5):736-47 [PMID: 8573350]
  8. Cell Signal. 2021 Aug;84:110006 [PMID: 33857577]
  9. Genetics. 1993 Dec;135(4):1035-45 [PMID: 8307321]
  10. Elife. 2023 Mar 13;12: [PMID: 36913486]
  11. Science. 2003 Sep 5;301(5638):1387-91 [PMID: 12958363]
  12. Nature. 1998 Oct 29;395(6705):854 [PMID: 9804418]
  13. Proc Natl Acad Sci U S A. 2008 Mar 4;105(9):3438-42 [PMID: 18316725]
  14. J Biol Chem. 2022 Jul;298(7):102085 [PMID: 35636511]
  15. Ann N Y Acad Sci. 2002 Apr;959:466-74 [PMID: 11976220]
  16. Development. 2015 Dec 15;142(24):4374-84 [PMID: 26552885]
  17. Genetics. 2018 Dec;210(4):1355-1367 [PMID: 30274988]
  18. Matrix Biol. 2017 Oct;62:15-27 [PMID: 27793636]
  19. Mol Biol Cell. 2020 Apr 1;31(8):825-832 [PMID: 32049594]
  20. PLoS One. 2014 Dec 04;9(12):e114680 [PMID: 25474529]
  21. Dev Cell. 2009 Jul;17(1):9-26 [PMID: 19619488]
  22. PLoS One. 2014 Jul 11;9(7):e101929 [PMID: 25013968]
  23. Development. 2006 Aug;133(15):2887-96 [PMID: 16790477]
  24. Trends Cell Biol. 2013 Sep;23(9):409-20 [PMID: 23726168]
  25. Methods Mol Biol. 2019;1944:169-188 [PMID: 30840243]
  26. PLoS Genet. 2021 Mar 4;17(3):e1009358 [PMID: 33661901]
  27. WormBook. 2013 Dec 09;:1-30 [PMID: 25263666]
  28. Worm. 2017 May 17;6(1):e1330246 [PMID: 28702275]
  29. Dev Biol. 2011 Apr 1;352(1):92-103 [PMID: 21256840]
  30. Front Endocrinol (Lausanne). 2020 Oct 05;11:554994 [PMID: 33123086]
  31. Front Aging Neurosci. 2019 Apr 24;11:88 [PMID: 31068799]
  32. Nat Methods. 2010 Jul;7(7):554-9 [PMID: 20512143]
  33. Genetics. 1993 Dec;135(4):1011-22 [PMID: 8307319]
  34. WormBook. 2007 Mar 19;:1-15 [PMID: 18050497]
  35. Geroscience. 2017 Feb;39(1):7-18 [PMID: 28299638]
  36. Nat Med. 2014 Jun;20(6):670-5 [PMID: 24793237]
  37. Ann Med. 2001 Feb;33(1):7-21 [PMID: 11310942]
  38. Nat Commun. 2020 Feb 25;11(1):1043 [PMID: 32098962]
  39. BMC Dev Biol. 2004 Sep 20;4:11 [PMID: 15380030]
  40. Cell. 2010 Oct 15;143(2):299-312 [PMID: 20946987]
  41. Genetics. 2022 Mar 3;220(3): [PMID: 34849856]
  42. BMC Dev Biol. 2010 Jun 07;10:61 [PMID: 20529267]
  43. Mol Cells. 2021 Mar 31;44(3):160-167 [PMID: 33692220]
  44. Matrix Biol Plus. 2019 Feb 21;1:100001 [PMID: 33543001]
  45. Exp Gerontol. 2003 Mar;38(3):345-6 [PMID: 12581802]
  46. J Biol Methods. 2020 Oct 26;7(4):e137 [PMID: 33204740]
  47. Genetics. 2002 May;161(1):83-97 [PMID: 12019225]
  48. Exp Biol Med (Maywood). 2007 Oct;232(9):1121-9 [PMID: 17895520]
  49. FEBS J. 2020 Jul;287(13):2636-2646 [PMID: 32145148]
  50. Mol Biol Cell. 2003 Apr;14(4):1366-78 [PMID: 12686594]
  51. J Neurochem. 2018 Feb;144(4):443-465 [PMID: 29240990]
  52. Nature. 1993 Dec 2;366(6454):461-4 [PMID: 8247153]
  53. Peptides. 2002 Apr;23(4):807-16 [PMID: 11897402]
  54. PLoS Genet. 2009 Dec;5(12):e1000789 [PMID: 20041217]
  55. Muscles Ligaments Tendons J. 2014 Nov 17;4(3):303-8 [PMID: 25489547]
  56. Nature. 2008 Feb 28;451(7182):1069-75 [PMID: 18305538]
  57. Exp Mol Med. 2020 Jun;52(6):911-920 [PMID: 32576931]
  58. Cell Res. 2014 Jan;24(1):24-41 [PMID: 24366339]
  59. J Dev Biol. 2020 Oct 06;8(4): [PMID: 33036165]
  60. WormBook. 2013 Dec 30;:1-58 [PMID: 24395816]
  61. Aging Dis. 2010 Oct;1(2):147-57 [PMID: 22396862]
  62. Science. 2007 Aug 10;317(5839):807-10 [PMID: 17690295]
  63. Cell. 2009 Dec 11;139(6):1056-68 [PMID: 20005801]
  64. Curr Biol. 2007 Oct 9;17(19):1635-45 [PMID: 17900898]
  65. Nature. 2015 Mar 5;519(7541):97-101 [PMID: 25517099]
  66. Free Radic Biol Med. 2015 Nov;88(Pt B):314-336 [PMID: 26066302]
  67. J Cell Biol. 2001 Jul 23;154(2):415-26 [PMID: 11470828]
  68. Science. 1997 Nov 14;278(5341):1319-22 [PMID: 9360933]
  69. Aging Cell. 2014 Feb;13(1):8-18 [PMID: 23879250]
  70. Nature. 1997 Oct 30;389(6654):994-9 [PMID: 9353126]
  71. Proc Natl Acad Sci U S A. 2008 Sep 16;105(37):13987-92 [PMID: 18765803]
  72. Development. 2020 May 28;147(10): [PMID: 32467294]
  73. Curr Biol. 2002 Jul 23;12(14):1209-14 [PMID: 12176330]
  74. Genetics. 2015 Jun;200(2):387-407 [PMID: 26088431]
  75. Dev Biol. 2015 Aug 1;404(1):66-79 [PMID: 25959238]
  76. Aging Cell. 2021 Sep;20(9):e13441 [PMID: 34346557]
  77. Exp Cell Res. 2014 Feb 1;321(1):64-70 [PMID: 24075963]
  78. Front Genet. 2014 Jul 23;5:212 [PMID: 25101108]
  79. Nature. 1996 Aug 8;382(6591):536-9 [PMID: 8700226]
  80. Gerontology. 2020;66(3):266-274 [PMID: 31838471]
  81. Osteoarthritis Cartilage. 2003 Nov;11(11):801-9 [PMID: 14609533]
  82. G3 (Bethesda). 2017 May 05;7(5):1429-1437 [PMID: 28280211]
  83. Adv Sci (Weinh). 2023 Mar;10(8):e2205037 [PMID: 36642841]
  84. Science. 2007 Aug 10;317(5839):803-6 [PMID: 17690294]
  85. Genes Cancer. 2011 Dec;2(12):1139-45 [PMID: 22866205]
  86. Cell. 2012 Jun 8;149(6):1192-205 [PMID: 22682243]
  87. Trends Immunol. 2022 Jun;43(6):423-425 [PMID: 35527181]
  88. Elife. 2017 Jul 04;6: [PMID: 28675140]
  89. J Cell Sci. 2008 Feb 15;121(Pt 4):407-12 [PMID: 18256383]
  90. J Biol Chem. 2002 Dec 20;277(51):49591-7 [PMID: 12393910]
  91. PLoS Genet. 2021 Oct 11;17(10):e1009836 [PMID: 34634043]
  92. Biosci Biotechnol Biochem. 2007 Nov;71(11):2680-7 [PMID: 17986775]
  93. Cold Spring Harb Perspect Biol. 2017 Jun 1;9(6): [PMID: 28096268]
  94. Am J Hum Genet. 2000 Apr;66(4):1398-402 [PMID: 10739762]
  95. Aging Cell. 2011 Feb;10(1):148-57 [PMID: 21108727]
  96. PLoS Genet. 2017 Jan 20;13(1):e1006544 [PMID: 28107363]
  97. Genetics. 2018 Apr;208(4):1467-1482 [PMID: 29487136]
  98. Genetics. 2002 Dec;162(4):1631-9 [PMID: 12524338]
  99. Annu Rev Cell Dev Biol. 2004;20:781-810 [PMID: 15473860]
  100. Genetics. 2017 Oct;207(2):625-642 [PMID: 28842397]
  101. J Cell Biol. 2001 Jul 23;154(2):403-14 [PMID: 11470827]
  102. WormBook. 2013 Jul 10;:1-34 [PMID: 23908056]
  103. Proc Natl Acad Sci U S A. 2007 Oct 30;104(44):17376-81 [PMID: 17962419]
  104. Subcell Biochem. 2018;90:169-190 [PMID: 30779010]
  105. Mol Gen Genet. 1998 Jul;259(1):2-12 [PMID: 9738874]
  106. Elife. 2021 Sep 10;10: [PMID: 34505574]
  107. Biochem Biophys Res Commun. 2018 Nov 10;505(4):1168-1173 [PMID: 30322618]
  108. Curr Biol. 2018 Apr 23;28(8):1234-1245.e4 [PMID: 29628370]
  109. Cold Spring Harb Perspect Biol. 2016 May 02;8(5): [PMID: 27141051]
  110. Fac Rev. 2020 Dec 22;9:27 [PMID: 33659959]
  111. Development. 1999 Jan;126(2):241-50 [PMID: 9847238]
  112. Proc Natl Acad Sci U S A. 2022 Apr 12;119(15):e2109508119 [PMID: 35394881]
  113. Front Aging. 2022 Jul 07;3:935220 [PMID: 35874275]
  114. Diabetes. 1988 Dec;37(12):1595-607 [PMID: 3056758]
  115. EMBO J. 2022 Apr 19;41(8):e109633 [PMID: 35253240]
  116. J Cell Biol. 2019 Dec 2;218(12):3998-4006 [PMID: 31658998]
  117. Nat Immunol. 2009 Mar;10(3):249-56 [PMID: 19198592]
  118. Br Med J. 1970 Dec 26;4(5738):773-4 [PMID: 5503232]
  119. Dev Cell. 2020 Jan 6;52(1):21-37.e5 [PMID: 31735670]
  120. MicroPubl Biol. 2023 Apr 12;2023: [PMID: 37122503]
  121. Cell. 2008 Mar 21;132(6):1025-38 [PMID: 18358814]
  122. Dev Cell. 2020 Jul 6;54(1):60-74.e7 [PMID: 32585132]
  123. Mol Cell. 2014 Feb 6;53(3):380-92 [PMID: 24440504]
  124. Genes (Basel). 2020 Mar 09;11(3): [PMID: 32182864]
  125. WormBook. 2005 Sep 01;:1-15 [PMID: 18050423]
  126. Wiley Interdiscip Rev Dev Biol. 2012 Nov-Dec;1(6):879-902 [PMID: 23539358]
  127. Genes Dev. 1999 Jun 1;13(11):1438-52 [PMID: 10364160]
  128. Nature. 2008 Sep 4;455(7209):72-7 [PMID: 18701888]
  129. Curr Top Membr. 2015;76:337-71 [PMID: 26610919]
  130. Annu Rev Med. 2005;56:45-62 [PMID: 15660501]
  131. Cancer Discov. 2019 Jan;9(1):64-81 [PMID: 30279173]
  132. G3 (Bethesda). 2014 Apr 16;4(4):733-47 [PMID: 24569038]
  133. Biophys J. 2022 Feb 15;121(4):515-524 [PMID: 35065051]
  134. Am J Pathol. 2006 Jun;168(6):1861-8 [PMID: 16723701]
  135. Front Oncol. 2018 Oct 09;8:431 [PMID: 30356678]

Grants

  1. R15 GM112147/NIGMS NIH HHS
  2. R21 AG075315/NIA NIH HHS

MeSH Term

Animals
Caenorhabditis elegans
Caenorhabditis elegans Proteins
Aging
Longevity
Wnt Signaling Pathway

Chemicals

Caenorhabditis elegans Proteins

Word Cloud

Created with Highcharts 10.0.0extracellularmatrixpathwaysagingconservedsignalingplayrolesnematodecircuitsNumerouscriticalincludinginsulin/IGF-1TGF-βWntalsoprominentformationmaintenanceenduringlyproductivesystemidentificationmechanismsbiologicalRecentstudieshighlightregulatoryrevealingbidirectionalrelationshipfactorsprovidingplatformaddressregulationcanimpactlifespanorganismalhealthdiscoveriesprovidenewopportunitiesclinicaladvancesnoveltherapeuticstrategiesSignalingapicalaging:connectionsidentifiedCaenorhabditiseleganscellcuticle

Similar Articles

Cited By