Genome-wide circadian gating of a cold temperature response in bread wheat.

Calum A Graham, Pirita Paajanen, Keith J Edwards, Antony N Dodd
Author Information
  1. Calum A Graham: Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom.
  2. Pirita Paajanen: Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom.
  3. Keith J Edwards: School of Biological Sciences, University of Bristol, Bristol Life Sciences Building, Bristol, United Kingdom.
  4. Antony N Dodd: Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom. ORCID

Abstract

Circadian rhythms coordinate the responses of organisms with their daily fluctuating environments, by establishing a temporal program of gene expression. This schedules aspects of metabolism, physiology, development and behaviour according to the time of day. Circadian regulation in plants is extremely pervasive, and is important because it underpins both productivity and seasonal reproduction. Circadian regulation extends to the control of environmental responses through a regulatory process known as circadian gating. Circadian gating is the process whereby the circadian clock regulates the response to an environmental cue, such that the magnitude of response to an identical cue varies according to the time of day of the cue. Here, we show that there is genome-wide circadian gating of responses to cold temperatures in plants. By using bread wheat as an experimental model, we establish that circadian gating is crucial to the programs of gene expression that underlie the environmental responses of a crop of major socioeconomic importance. Furthermore, we identify that circadian gating of cold temperature responses are distributed unevenly across the three wheat subgenomes, which might reflect the geographical origins of the ancestors of modern wheat.

References

  1. Proc Natl Acad Sci U S A. 2010 May 18;107(20):9458-63 [PMID: 20439704]
  2. Open Biol. 2017 Mar;7(3): [PMID: 28250106]
  3. Science. 2000 Dec 15;290(5499):2110-3 [PMID: 11118138]
  4. Proc Natl Acad Sci U S A. 2012 Oct 16;109(42):17123-8 [PMID: 23027938]
  5. Plant Physiol. 2022 Sep 28;190(2):968-980 [PMID: 35894658]
  6. Science. 2018 Aug 17;361(6403): [PMID: 30115783]
  7. J Neurochem. 2021 Apr;157(1):11-30 [PMID: 32717140]
  8. Proc Natl Acad Sci U S A. 2021 Mar 9;118(10): [PMID: 33649234]
  9. Nat Commun. 2019 Feb 1;10(1):550 [PMID: 30710080]
  10. Elife. 2013 Apr 30;2:e00473 [PMID: 23638299]
  11. Plant Cell. 2021 Aug 13;33(7):2164-2182 [PMID: 33871647]
  12. Nucleic Acids Res. 2012 May;40(10):4288-97 [PMID: 22287627]
  13. Plant J. 2009 Oct;60(2):328-39 [PMID: 19566593]
  14. New Phytol. 2021 Jul;231(1):40-46 [PMID: 33780004]
  15. Plant Physiol. 1992 Nov;100(3):1283-90 [PMID: 16653118]
  16. Elife. 2020 Sep 30;9: [PMID: 32996462]
  17. Plant Cell Physiol. 2015 Apr;56(4):594-604 [PMID: 25432974]
  18. Plant Physiol. 2005 Mar;137(3):961-8 [PMID: 15728337]
  19. Plant Cell. 2019 Oct;31(10):2353-2369 [PMID: 31358650]
  20. Mol Genet Genomics. 2007 May;277(5):533-54 [PMID: 17285309]
  21. Plant Mol Biol. 2019 Sep;101(1-2):1-19 [PMID: 31062216]
  22. Mol Syst Biol. 2012;8:606 [PMID: 22929616]
  23. Proc Natl Acad Sci U S A. 1967 Nov;58(5):1862-9 [PMID: 5237488]
  24. Genome Biol. 2008;9(8):R130 [PMID: 18710561]
  25. Bioinformatics. 2010 Jun 15;26(12):i168-74 [PMID: 20529902]
  26. Imeta. 2022 Aug 01;1(3):e43 [PMID: 38868715]
  27. Nucleic Acids Res. 2015 Apr 20;43(7):e47 [PMID: 25605792]
  28. Izv Akad Nauk Ser Biol. 2011 Mar-Apr;(2):171-7 [PMID: 21506391]
  29. Mol Cell Proteomics. 2015 Aug;14(8):2243-60 [PMID: 26091701]
  30. Cell. 2012 Dec 7;151(6):1358-69 [PMID: 23217716]
  31. Plant J. 2012 Jul;71(1):71-84 [PMID: 22372488]
  32. Plant Physiol. 2008 May;147(1):263-79 [PMID: 18375597]
  33. Science. 2021 Apr 30;372(6541): [PMID: 33926926]
  34. Proc Natl Acad Sci U S A. 2003 May 27;100(11):6878-83 [PMID: 12736379]
  35. PLoS Comput Biol. 2014 Jul 17;10(7):e1003705 [PMID: 25033214]
  36. PLoS Biol. 2022 Oct 13;20(10):e3001802 [PMID: 36227835]
  37. Nature. 2014 Nov 20;515(7527):419-22 [PMID: 25363766]
  38. J Exp Bot. 2013 Apr;64(7):1783-93 [PMID: 23420880]
  39. Plant Physiol. 2019 Jul;180(3):1740-1755 [PMID: 31064813]
  40. Nat Genet. 2020 Dec;52(12):1412-1422 [PMID: 33106631]
  41. Plant Cell. 2016 Mar;28(3):696-711 [PMID: 26941090]
  42. Bioinformatics. 2016 Sep 15;32(18):2847-9 [PMID: 27207943]
  43. F1000Res. 2016 Jun 20;5:1438 [PMID: 27508061]
  44. Plant Cell. 2017 Feb;29(2):207-228 [PMID: 28138016]
  45. Plant Physiol. 2016 Apr;170(4):2172-86 [PMID: 26869702]
  46. Bioinformatics. 2016 Nov 1;32(21):3351-3353 [PMID: 27378304]
  47. Cell Rep. 2018 Feb 13;22(7):1657-1665 [PMID: 29444421]
  48. Science. 2005 Nov 11;310(5750):1031-4 [PMID: 16284181]
  49. Mol Cell Proteomics. 2022 Jan;21(1):100172 [PMID: 34740825]
  50. New Phytol. 2020 Dec;228(6):1748-1753 [PMID: 31664720]
  51. Nat Biotechnol. 2022 Mar;40(3):422-431 [PMID: 34725503]
  52. Bioinformatics. 2010 Jan 1;26(1):139-40 [PMID: 19910308]
  53. Biochim Biophys Acta. 2007 Jun;1767(6):414-21 [PMID: 17207454]
  54. Plant Biotechnol J. 2010 Sep;8(7):749-71 [PMID: 20561247]
  55. Plant Cell. 2018 Jul;30(7):1424-1444 [PMID: 29764987]
  56. Plant Physiol. 2010 Oct;154(2):571-7 [PMID: 20921187]
  57. Proc Natl Acad Sci U S A. 2011 Apr 26;108(17):7241-6 [PMID: 21471455]
  58. Science. 2005 Jul 22;309(5734):630-3 [PMID: 16040710]
  59. EMBO J. 2024 Jul;43(13):2813-2833 [PMID: 38778155]
  60. Proc Natl Acad Sci U S A. 2012 Feb 21;109(8):3167-72 [PMID: 22315425]
  61. Tree Physiol. 2013 Aug;33(8):866-77 [PMID: 23956128]
  62. Curr Opin Plant Biol. 2021 Dec;64:102133 [PMID: 34773857]
  63. BMC Plant Biol. 2014 Apr 28;14:108 [PMID: 24774299]
  64. Plant Cell Environ. 2021 Mar;44(3):821-841 [PMID: 33278033]
  65. Annu Rev Plant Biol. 2016 Apr 29;67:595-618 [PMID: 26653934]
  66. Nat Methods. 2015 Feb;12(2):115-21 [PMID: 25633503]
  67. Biotechnol Biofuels. 2021 Apr 19;14(1):98 [PMID: 33874976]
  68. Plant Physiol. 2004 Sep;136(1):2687-99 [PMID: 15347792]
  69. Plant Cell Environ. 2007 Mar;30(3):333-349 [PMID: 17263778]
  70. Stat Appl Genet Mol Biol. 2004;3:Article3 [PMID: 16646809]
  71. Mol Syst Biol. 2018 Mar 1;14(3):e7962 [PMID: 29496885]
  72. Theor Appl Genet. 2007 Sep;115(5):721-33 [PMID: 17634915]
  73. Physiol Plant. 2003 Apr;117(4):521-531 [PMID: 12675742]
  74. Int J Mol Sci. 2017 Aug 22;18(8): [PMID: 28829375]
  75. Nat Commun. 2016 Dec 14;7:13692 [PMID: 27966533]
  76. Sci Rep. 2019 Mar 18;9(1):4814 [PMID: 30886204]
  77. Proc Natl Acad Sci U S A. 2024 Aug 27;121(35):e2402697121 [PMID: 39172785]
  78. Plant J. 2006 Dec;48(6):962-73 [PMID: 17227550]
  79. Science. 2018 Aug 17;361(6403): [PMID: 30115782]
  80. Genes (Basel). 2021 Mar 06;12(3): [PMID: 33800720]

MeSH Term

Triticum
Gene Expression Regulation, Plant
Cold Temperature
Circadian Rhythm
Circadian Clocks
Genome, Plant
Bread

Word Cloud

Created with Highcharts 10.0.0circadiangatingresponsesCircadianwheatenvironmentalresponsecuecoldgeneexpressionaccordingtimedayregulationplantsprocessbreadtemperaturerhythmscoordinateorganismsdailyfluctuatingenvironmentsestablishingtemporalprogramschedulesaspectsmetabolismphysiologydevelopmentbehaviourextremelypervasiveimportantunderpinsproductivityseasonalreproductionextendscontrolregulatoryknownwherebyclockregulatesmagnitudeidenticalvariesshowgenome-widetemperaturesusingexperimentalmodelestablishcrucialprogramsunderliecropmajorsocioeconomicimportanceFurthermoreidentifydistributedunevenlyacrossthreesubgenomesmightreflectgeographicaloriginsancestorsmodernGenome-wide

Similar Articles

Cited By