Assessment of Stoichiometric Autocatalysis across Element Groups.

Zhen Peng, Zachary R Adam, Albert C Fahrenbach, Betül Kaçar
Author Information
  1. Zhen Peng: Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States. ORCID
  2. Zachary R Adam: Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.
  3. Albert C Fahrenbach: School of Chemistry, Australian Centre for Astrobiology and the UNSW RNA Institute, University of New South Wales, Sydney, NSW 2052, Australia. ORCID
  4. Betül Kaçar: Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.

Abstract

Autocatalysis has been proposed to play critical roles during abiogenesis. These proposals are at odds with a limited number of known examples of abiotic (and, in particular, inorganic) autocatalytic systems that might reasonably function in a prebiotic environment. In this study, we broadly assess the occurrence of stoichiometries that can support autocatalytic chemical systems through comproportionation. If the product of a comproportionation reaction can be coupled with an auxiliary oxidation or reduction pathway that furnishes a reactant, then a roportionation-based utocatalytic ycle (CompAC) can exist. Using this strategy, we surveyed the literature published in the past two centuries for reactions that can be organized into CompACs that consume some chemical species as food to synthesize more autocatalysts. 226 CompACs and 44 Broad-sense CompACs were documented, and we found that each of the 18 groups, lanthanoid series, and actinoid series in the periodic table has at least two CompACs. Our findings demonstrate that stoichiometric relationships underpinning abiotic autocatalysis could broadly exist across a range of geochemical and cosmochemical conditions, some of which are substantially different from the modern Earth. Meanwhile, the observation of some autocatalytic systems requires effective spatial or temporal separation between the food chemicals while allowing comproportionation and auxiliary reactions to proceed, which may explain why naturally occurring autocatalytic systems are not frequently observed. The collated CompACs and the conditions in which they might plausibly support complex, "life-like" chemical dynamics can directly aid an expansive assessment of life's origins and provide a compendium of alternative hypotheses concerning false-positive biosignatures.

References

  1. Astrobiology. 2018 Nov;18(11):1375-1402 [PMID: 29862836]
  2. Genome Biol. 2008;9(3):R51 [PMID: 18331628]
  3. Geobiology. 2020 May;18(3):394-411 [PMID: 32065506]
  4. Chembiochem. 2021 Jan 5;22(1):114-119 [PMID: 33136319]
  5. Phys Life Rev. 2022 Jul;41:64-83 [PMID: 35594602]
  6. J Biol Inorg Chem. 2008 Nov;13(8):1205-18 [PMID: 18604568]
  7. Proc Biol Sci. 2020 Mar 11;287(1922):20192377 [PMID: 32156207]
  8. J R Soc Interface. 2020 Oct;17(171):20200488 [PMID: 33023395]
  9. Nature. 1999 Dec 2;402(6761 Suppl):C47-52 [PMID: 10591225]
  10. Ecol Lett. 2014 Feb;17(2):127-36 [PMID: 24382355]
  11. J Theor Biol. 1986 Mar 7;119(1):1-24 [PMID: 3713221]
  12. Nat Rev Chem. 2021 Dec;5(12):870-878 [PMID: 37117387]
  13. Proc Natl Acad Sci U S A. 2021 Aug 17;118(33): [PMID: 34389683]
  14. Proc Natl Acad Sci U S A. 2020 Oct 13;117(41):25230-25236 [PMID: 32989134]
  15. PLoS Comput Biol. 2022 Sep 9;18(9):e1010498 [PMID: 36084149]
  16. Talanta. 2010 Oct 15;82(5):1809-13 [PMID: 20875581]
  17. Bioessays. 2006 Apr;28(4):399-412 [PMID: 16547956]
  18. Nat Commun. 2022 May 20;13(1):2816 [PMID: 35595758]
  19. J Syst Chem. 2015;6(1):4 [PMID: 25995773]
  20. Life (Basel). 2020 Dec 16;10(12): [PMID: 33339192]
  21. Angew Chem Int Ed Engl. 2022 Apr 25;61(18):e202117605 [PMID: 35179808]
  22. Sci Adv. 2015 Feb 27;1(1):e1400067 [PMID: 26601130]
  23. Chem Sci. 2022 Mar 23;13(17):4838-4853 [PMID: 35655880]
  24. Acc Chem Res. 2012 Dec 18;45(12):2025-34 [PMID: 22455515]
  25. Radiat Res. 1976 Jun;66(3):433-42 [PMID: 935336]
  26. Nature. 2016 Sep 28;537(7622):656-60 [PMID: 27680939]
  27. Nature. 2005 Jan 13;433(7022):139-42 [PMID: 15650734]
  28. NPJ Syst Biol Appl. 2023 Oct 26;9(1):52 [PMID: 37884541]
  29. Chem Rev. 2020 Aug 12;120(15):7708-7744 [PMID: 32687326]
  30. J Theor Biol. 2020 Dec 21;507:110451 [PMID: 32800733]
  31. Biol Direct. 2012 Jan 05;7:1; discussion 1 [PMID: 22221860]
  32. Nat Ecol Evol. 2017 Nov;1(11):1716-1721 [PMID: 28970480]
  33. Sci Adv. 2020 Feb 05;6(6):eaax3419 [PMID: 32076638]
  34. Biosystems. 1982;15(2):89-97 [PMID: 7104475]
  35. PLoS Biol. 2008 Jan;6(1):e18 [PMID: 18215113]
  36. Proc Natl Acad Sci U S A. 2020 May 19;117(20):10699-10705 [PMID: 32371490]
  37. Langmuir. 2010 Sep 7;26(17):13770-2 [PMID: 20704339]
  38. Biosystems. 2020 Feb;188:104063 [PMID: 31715221]
  39. Geobiology. 2013 Mar;11(2):101-26 [PMID: 23331348]

MeSH Term

Catalysis
Earth, Planet

Word Cloud

Created with Highcharts 10.0.0canCompACsautocatalyticsystemschemicalcomproportionationAutocatalysisabioticmightbroadlysupportauxiliaryexisttworeactionsfoodseriesacrossconditionsproposedplaycriticalrolesabiogenesisproposalsoddslimitednumberknownexamplesparticularinorganicreasonablyfunctionprebioticenvironmentstudyassessoccurrencestoichiometriesproductreactioncoupledoxidationreductionpathwayfurnishesreactantroportionation-basedutocatalyticycleCompACUsingstrategysurveyedliteraturepublishedpastcenturiesorganizedconsumespeciessynthesizeautocatalysts22644Broad-sensedocumentedfound18groupslanthanoidactinoidperiodictableleastfindingsdemonstratestoichiometricrelationshipsunderpinningautocatalysisrangegeochemicalcosmochemicalsubstantiallydifferentmodernEarthMeanwhileobservationrequireseffectivespatialtemporalseparationchemicalsallowingproceedmayexplainnaturallyoccurringfrequentlyobservedcollatedplausiblycomplex"life-like"dynamicsdirectlyaidexpansiveassessmentlife'soriginsprovidecompendiumalternativehypothesesconcerningfalse-positivebiosignaturesAssessmentStoichiometricElementGroups

Similar Articles

Cited By